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Rapid learning of complex sequences with time
constraints: A dynamic neural field model
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Abstract—Many of our sequential activities require that behav-
iors must be both precisely timed and put in the proper order.
This paper presents a neuro-computational model based on the
theoretical framework of Dynamic Neural Fields that supports
the rapid learning and flexible adaptation of coupled order-timing
representations of sequential events. A key assumption is that
elapsed time is encoded in the monotonic buildup of self-stabilized
neural population activity representing event memory. A stable
activation gradient over subpopulations carries the information
of an entire sequence. With robotics applications in mind, we test
the model in simulations of a learning by observation paradigm,
in which the cognitive agent first memorizes the order and
relative timing of observed events and, subsequently, recalls the
information from memory taking potential speed constraints into
account. Model robustness is tested by systematically varying
sequence complexity along the temporal and the ordinal dimen-
sion. Furthermore, an adaptation rule is proposed that allows
the agent to adjust in a single trial a learned timing pattern to a
changing temporal context. The simulation results are discussed
with respect to our goal to endow autonomous robots with
the capacity to efficiently learn complex sequences with time
constraints, supporting more natural human-robot interactions.

I. INTRODUCTION

The ability to acquire sensitivity about ordinal and temporal
regularities in sequential activities is fundamental to our adap-
tive behavior in an inherently dynamic environment [1]. We
can use knowledge of these regularities to predict what sensory
or motor event comes next and when it will happen. The
benefits of predictive in contrast to pure reactive processing
of events have been widely recognized both in the perceptual
and the motor domain [2]. It allows the cognitive system to
optimize behavior and, thus, save precious resources. Fluent
and skillful performance of many of our everyday sequential
behaviors requires that the coupling of the internally guided
processing of the order, interval, and duration of events is
rather tight. This is immediately evident for tasks like tapping
your fingers to the rhythm of a tune, but it also applies to
common sequential actions like starting the car when the traffic
light turns green, or smoothly handing over a series of objects
to another person. The learning mechanisms responsible for
forming such coupled order-timing representations and their
putative neural substrate are a matter of considerable debate
[3], [4], [5], [6], [7]. Valuable insight comes from experiments
with the serial reaction time (SRT) paradigm developed by
Nissen and Bullemer [8], which has been extensively used
in the past to study the cognitive and neural mechanisms
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supporting perceptual and motor sequence learning. In the
basic form of this paradigm, participants are instructed to
react as quickly and as accurately as possible to successively
presented stimuli by pressing the assigned response keys. The
sequence of targets follows a fixed order which repeats many
times. Sequence-specific learning is shown by being faster
and more accurate on blocks with patterned trials as opposed
to blocks of randomly ordered stimuli. To access temporal
learning, the time intervals between successive stimuli can be
also manipulated, following a structured or a random pattern.
The best performance is achieved when the temporal and the
ordinal sequences are correlated and a predictive relationship
between action order and timing exists. This finding has
been interpreted as evidence that sequential and temporal
information are bounded together in memory during learning
([6], [7], but see [5]). SRT learning bears some similarity with
learning to play a melody on a piano, by pressing the right
keys in the correct order and time in response to sensory cues
[9]. Different to the temporal goal of an SRT paradigm, which
does not require a precise temporal expectation of upcoming
events, musical performance requires that timing becomes
fully integrated into the procedural representation since the
same series of pitch events may have a different meaning
depending on the precise temporal intervals separating them
[10].

In this paper, we present a computational model for learning
of timed sequential events based on the theoretical frame-
work of Dynamic Neural Fields (DNF) [11], [12]. It im-
plements neuro-plausible processing mechanisms supporting
the efficient acquisition and flexible reproduction of complex
sequences with strong time constraints. The model is an
extension of a previous DNF model that we have applied
to endow autonomous robots with the capacity to learn the
serial order of sequential tasks by observation [13], [14], [15].
The most significant advances compared to the previous work
are in the processing of temporal characteristics of sequential
events and a systematic test of model robustness. The lack
of a time processing ability in most current robotic cognitive
systems is considered a major obstruction to the seamless
integration of robots into human environments [16]. The DNF
model is able to memorize and recall not only the order and
relative timing of events but also their durations. Furthermore,
we propose a fast adaptation rule that allows a cognitive
agent to synchronize the internally guided timing of the entire
sequence or individual events with external cues and to correct
timing errors. Such temporal flexibility must be built into
any robotics system that is supposed to operate autonomously
in human environments (e.g., human-robot interactions [17],
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[18]). Crucial for future real-world robot implementations, we
test the robustness of the model performance by analyzing the
impact of different noise sources on the occurrence of errors
in serial order and on the precision of event timing.
The dynamic neural field model implements several key pro-
cessing mechanisms which are commonly believed to support
the accumulation, storage, and recall of sensory events in
associative brain areas. The short-term memory of an event
is represented through the persistent activity of a neural
population tuned to the stimulus dimension guiding sequence
learning. Dynamic field theory explains a self-sustained ac-
tivity pattern that outlasts the presence of a brief input by
strong recurrent excitatory and inhibitory interactions within
neural populations [19], [20]. We propose a separate threshold
accommodation dynamics to account for the finding that the
input-dependent persistent activity is not static but often varies
systematically over the course of maintenance. The observed
monotonic increase (or decrease) has been interpreted as
evidence that the self-sustained population activity encodes
in addition to input identity also elapsed time [21], [22],
[23]. As a result, the neural dynamics of a “memory field”
establish in response to a series of sensory cues a gradient
of persistent activity over subpopulations which carries the
information about the sequential order and the relative timing
of events. The combined information about the two task
variables is sequentially recalled in a “decision field” which
receives the stable activation pattern as subthreshold input. All
subpopulations encoding specific events thus appear to be pre-
activated with a strength reflecting their rank order [24], [25],
[26]. Following the framework of a bounded accumulation of
stochastic evidence frequently applied in biological models
of sensorimotor decisions ([27], see also [28]), a continuous
rise of population activity from the pre-activated state to
a pre-specified threshold defines the expected event timing.
A context-dependent, highly flexible timing of the entire
sequence is achieved without recourse to any changes in the
network structure by adapting the initial condition or the input
to the ramp-to-threshold dynamics [29].
The remainder of the paper is organized as follows: in Section
II, we present an overview of the DNF model and describe its
mathematical implementation. In Section III, we illustrate how
the fast learning mechanism encodes order-timing information
of sequential events including repetitions. Next, in Section IV,
it is shown how the stored information can be recalled with
different execution speeds, preserving relative event timing.
Section V presents two important model extensions, the en-
coding of event duration and the synchronization with external
reference cues signaling an expected timing pattern. Sequence
errors and the precision of time measurements are addressed
in Section VI using a stochastic version of the DNF model.
In section VII, a critical discussion of the results is provided,
and finally, in Section VIII, conclusions and future work are
presented.

II. OVERVIEW OF THE DNF MODEL

Dynamic neural fields provide a rigorous theoretical frame-
work to analyze and implement neural computations that

bridge gaps between sensation and action in order to mediate
working memory, action preparation, and decision making (for
review see [11]). DNFs are defined over continuous perceptual
or motor variables such as orientation, color, spatial object
location or movement direction. A DNF describes the acti-
vation dynamics of a recurrently connected neural population
tuned to the continuous dimension [20]. Crucial for the present
sequence learning experiment, the field dynamics supports the
existence of localized activity patterns which are initially trig-
gered by transient sensory signals and/or input from connected
populations but become self-sustained due to strong excitatory
and inhibitory interactions within the population. The steady
states of the field dynamics are often called bump attractors
since they represent bell-shaped activity patterns in metric
space. The translation-invariant connection structure enables
a DNF to hold a continuous family of such attractor states
[30]. The bump location thus provides a substrate for encoding
continuous variables.
To understand the model architecture and the implemented
neural computations depicted in Fig. 1, it is helpful to think
about a concrete robotics experiment. It is motivated by our
previous research on natural human-robot collaboration in an
assembly paradigm [17], [31], [18]. A robot learns by obser-
vation the serial order and relative timing of object handovers
between an assistant and an operator to subsequently substitute
the assistant in the joint task. Sequence learning is guided
by the object feature color. Additional start and stop cues
define sequence duration. An important prerequisite is that
robot learning should be fast and efficient since the human
tutors cannot be expected to repeat the demonstration many
times.
When the robot camera detects that the assistant grasps an ob-
ject with a specific color for handing it over, the camera input
creates a bump attractor in the perceptual field, uPon , defined
over this feature dimension. The bump position represents
the hue value in color space coordinates. Four different color
events are used in the model simulations (R=red, G=green,
B=blue, M=magenta). A bump in the perceptual field uPon
drives through excitatory connections (solid line) the evolution
of a localized activity pattern at the corresponding site in the
“on” sequence memory field uMon . We use here the prefix
“on” to distinguish the memory of cue onset from the memory
of cue offset that we exploit in a model extension to represent
also event duration (see section V-B). Inhibitory feedback
(dotted line) from uMon

to uPon destabilizes the existing
bump in the perceptual field. This ensures that newly arrived
localized input to uPon will automatically drive the evolution
of a bump at a different field location even if the specific
cue value is repeated during the course of the sequence.
A demonstrated series of color events creates a multi-bump
pattern in uMon

that stores all sequence elements with a
strength of activation decreasing from element to element as a
function of elapsed time since sequence onset. Persistent popu-
lation activity, which slowly increases as a function of elapsed
time, is achieved by a threshold accommodation dynamics. To
guarantee robustness of the encoding process in the face of
noisy and potentially incomplete sensory information, a fading
memory trace of the multi-bump in uMT builds up during suc-
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Fig. 1. Schematic view of the DNF architecture with several interconnected
fields implementing sequence learning and sequence recall. Dotted lines
represent inhibitory connections, solid lines excitatory connections. The arrow
from the sequence start field uStart to the memory field uMon indicates
that the time window for the threshold accommodation dynamics in uMon is
controlled by the presence of a bump in uStart. For details see the text.

cessive demonstrations. Subpopulations in uMT get excitatory
input from corresponding populations in uMon and project
via excitatory connections to the associated neural pools in
uPon . The resulting preshaping of neural populations in uPon
based on prior experience modulates perceptual thresholds and
speeds up the processing of inputs [32].
The three DNFs on bottom of Fig. 1 become active during
sequence recall. The “on decision” field uDon receives the
multi-bump pattern storing the order and relative timing of
events in uMon

as subthreshold input. A bump in the “sequence
start” field uStart, which is initially triggered by the presenta-
tion of the start cue, initiates a continuous rise of the baseline
activity in uDon . This results in a parallel ramping activity of
all pre-activated subpopulations until the threshold for creating
a bump is reached, starting with the population with the highest
pre-activation and ending with the population with the lowest
pre-activation. In robotics applications, we use the instant
when a specific subpopulation in uDon reaches the threshold
to initiate a motor response associated with this population
[13], [14]. In the object transfer task for instance, the robotics
assistant would start the grasping of the object with a specific
color to hand it over to the operator. The excitatory-inhibitory
connections between associated populations in uDon and the
working memory field uWM guarantee that the suprathreshold
activity representing the latest recall decision becomes first
stored in uWM and subsequently suppressed in uDon . If the
feedback inhibition works properly, potential repetition errors
during sequence recall are excluded.

A. Implementation details

In the following, we present the basic model equations that
implement the neural processing mechanisms just described
(for a full model description and parameter values see the
Appendices A and B). The population dynamics in each field
is governed by a field equation first proposed and analyzed by
Amari [19]:

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
w(|x− y|)f (u(y, t)) dy

+S(x, t)− h+ cuξ(x, t) (1)

where u(x, t) represents the activity at time t of a neuron
tuned to the feature value x. The global inhibition, h > 0,
determines the baseline level to which field excitation decays
without external stimulation. S(x, t) represents time dependent
localized input at site x from the vision system and/or con-
nected fields. The constant τ > 0 defines the time scale of the
field dynamics. The additive, spatially correlated noise ξ(x, t)
with strength cu > 0 is used in stochastic model simulations.
The firing rate function f(u) is taken as the Heaviside step
function with threshold 0. The interaction kernel w(|x − y|)
defines the coupling strength between any two neurons in the
field which is assumed to depend on Euclidian distance. For
fields where at most one bump should evolve at any time (e.g.,
uDon , uPon ), we use a standard kernel of lateral inhibition type
[19]:

wlat(x) = wexce

(
− x2

2σ2exc

)
− winh, (2)

where wexc > 0 and σexc > 0 define, respectively, the
amplitude and standard deviation, and winh > 0 defines
the approximately constant inhibition for distant neurons. To
enable input driven, multi-bump solutions in the memory
fields, we adopt a kernel with oscillatory rather than monotonic
decay [33], [34]:

wosc(x) = Ae−b|x| (b sin |αx|+ cos(αx)) , (3)

where b > 0 determines the rate at which the oscillations in
w decay with distance and A > 0 and 0 < α ≤ 1 control the
amplitude and the spatial phase of w, respectively. To establish
a stable activation gradient in uDon representing the order
and relative timing of perceived events, we chose the baseline
activity to be time dependent, h = h(t). Note that by including
h(t) in the definition of the firing rate function, f(u, h) =
f (u− h), it becomes clear that changing the baseline level
in the field equation is functionally equivalent to changing the
threshold of the transfer function f(u). Following the idea
of a phenomenological model of threshold accommodation in
dynamic fields [35], we apply the following state-dependent
dynamics for hMon

:

∂hMon(x, t)

∂t
= βMf(uMon

(x, t))

∫
Ω

f(uStart(x))dx

+[1− f(uMon
(x, t))][−hMon

(x, t) + hM0
] (4)

where f(u) is again the step function, hM0
< 0 defines

the baseline activation to which hMon converges without
suprathreshold activity at position x, and βM > 0 sets
the buildup rate of activity at field sites that have received
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localized input. The time window for the buildup is controlled
by the presence of a stable bump in uStart which is initially
triggered by the presentation of the sequence start signal at
tstart = 0 (e.g., an additional color cue in the robotics
application). The integral over the interval with suprathreshold
activity, Ω = {x : uStart(x) ≥ 0}, is simply the bump width,∫

Ω
f(uStart(x))dx = a > 0. The threshold accommodation

dynamics ends with the presentation of the stop signal at
t = tend. This signal is modeled as a transient inhibitory input
to ustart which destabilizes the bump. The suprathreshold
activity relaxes to the subthreshold baseline state, that is,∫

Ω
f(uStart(x))dx = 0.

To directly compare during sequence recall the predicted with
the demonstrated timing pattern, we further assume a common
start signal at time tstart = 0 for sequence demonstration
and production. The stable bump in uStart initiates the au-
tonomous sequence recall in the “on decision” field uDon .
The ramp-to threshold dynamics of the baseline activity is
governed by the equation:

dhD(t)

dt
= βD

∫
Ω

f(uStart(x))dx+ chε(t) (5)

where βD is a scaling parameter to control the speed of
sequence recall (see section IV). Random fluctuations in the
ramping dynamics, which we apply to address the precision
of timing (see section VI-B), are modeled by Gaussian noise,
ε(t), with strength ch.

III. ENCODING OF THE PERCEPTUAL SEQUENCE

A. Repeated items

The problem of how repeated items are encoded and re-
trieved has challenged theories of serial order. Ordinal theories
to which the dynamic field model belongs apply a gradient
of item activations in memory to represent order among
items without recourse to any associative process (for review
see [26]). Typical connectionist implementations assume that
individual items are represented by just a single node [36],
[37]. However, the repetition of an item in the input stream will
increase its activation relative to neighboring items, potentially
disrupting the order representation. To overcome this problem,
additional processing mechanisms providing positional infor-
mation have been integrated like for instance an association
of items with a smoothly varying control signal [36] or so-
called “rank-order neurons” that specifically respond to the
first, second or third presentation of a particular item [38] (for
a DNF implementation of a position code see [39]). In the
DNF model, there is no need to distinguish the processing of
repeated and non-repeated cues due to the feedback inhibition
from the “on memory” field to the perceptual field. Its primary
role is to destabilize an existing bump such that a new color
event can be processed. At the same time, the additional
inhibition from the memorized color guarantees that the new
bump evolves at a different position even if the color is
repeated. The only assumption we have to make is that only
a small portion of all neurons tuned to the specific hue value
evolves suprathreshold activity pattern in response to a single
input presentation. In a two-dimensional field in which the

x-coordinate represents color and the y-coordinate represents
item repetitions, a localized input representing a specific hue
value takes the shape of a ridge [40], [41]. To integrate
the computational mechanism for repeated items in a one-
dimensional field, we assume that the camera input activates
a part of the field which is much larger than the width of a
single bump. Since the exact shape of the transient input does
not matter, we use a rectangular input for simplicity. The field
thus appears to be segmented in blocks, each representing a
specific hue value. Importantly, this block structure does not
affect the buildup of the activation gradient in uMon

. There
is no difference whether the currently processed hue value is
repeated or not since only the time matters when the localized
activity reaches the threshold. Fig. 2 shows a snapshot of
sequence encoding in which an R and a G event are already
memorized as shown by the two bumps in uMon

and a second
R cue is currently processed in uPon . As can be clearly seen,
the position of the bump representing the second R event
appears to be shifted to the left of the neurons getting feedback
inhibition from the memory of the first R event.
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Fig. 2. Left: snapshot of activation (solid line) in the perceptual field, uPon ,
in the presence of external input colored dashed line) indicating an R-event.
Right: snapshot of activation in the “on” sequence memory field, uMon , black
dotted lines indicate inhibitory and black solid lines excitatory connections
between the two fields.

B. Role of preshaping

The memory in uMon is the result of the exposure to
repeated demonstrations of the entire sequence (purely per-
ceptual learning [42]). The increasing perceptual experience
with the task is reflected by an increasing baseline activity of
neural populations [43] that have processed item information
in preceding demonstrations. In the model, this preshaping
mechanism is the result of a fading memory trace in uMT

which receives the activation pattern in uMon
as excitatory

input. We assume that without the intention to actively recall
the sequence, the activity pattern in uMon

is reset to resting
state by the stop signal at the end of every sequence demon-
stration. The time constant of the field dynamics in uMT , on
the other hand, is chosen to ensure that the memory trace
may accumulate evidence from previous demonstrations. The
functional role of this preshaping mechanism is to boost the
processing of “expected” items. Since only one bump may
exist in uPon at a time, an input which is processed when
there exists still suprathreshold activity from the preceding
one, or an input which is too weak, may fail to drive a
suprathreshold activity pattern in uPon . Consequently, the
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item is not represented in uMon
. The probability of such an

encoding error is particularly high for repeated items due to the
inhibition from neighboring neurons or the feedback inhibition
from the corresponding population in uMon

(for experimental
evidence of so-called “repetition blindness” see [44]).
Fig. 3 presents results of a model simulation in which a
sequence of five color events including one repetition of R
is demonstrated in three consecutive trials. In the left panels,
the pre-activated populations of the perceptual field at the
beginning of the second and third trials reflect the growing
perceptual experience with the task. In the right panels, the
temporal evolution of supratreshold population activity in
uMon

is compared relative to the onset of the individual color
event (vertical line). The evolution is characterized by two
distinct phases. In response to the transient input from uPon ,
the activity first reaches a peak and then decays slightly. This
is followed by a phase of monotonically increasing population
activity due to the threshold accommodation dynamics. In the
first demonstration, the second input, which is a repetition
of the first, is not represented. At the moment when the
second input is applied to the perceptual field, the population
representation of the first stimulus is still suprathreshold (not
shown), resulting in an inhibition of neighboring neurons. As
a result, the second input fails to trigger a suprathreshold
response at a position which receives this lateral inhibition.
The situation is different in the second trial in which the
processing of all inputs except the second already starts from
an activation level closer to threshold. The temporal evolution
of the transient population response representing the first color
event is now fast enough so that the second repeated input may
trigger a bump. The activation gradient established in uMon

at the end of this trial reflects the correct serial order of all
five items. However, the variability in the time delay between
stimulus onset and the moment when the population response
reaches threshold is relatively high, indicating that the relative
timing of events is still not well represented in memory. As
can be seen in the evolution of the population activities in the
third trial, a larger pre-activation of populations in uPon due to
a larger input from uMT significantly reduces this variability,
resulting in a nearly identical delay for all item memories.

IV. SEQUENCE RECALL: DIFFERENT EXECUTION SPEEDS

The information stored in the activation gradient can be
recalled with the ramp-to-threshold dynamics which starts
at tstart = 0 from pre-activated population representations.
As can be seen in Fig. 4(A), the preshape strength at tstart
corresponds to the serial position of each item in the sequence
[24]. The release of inhibition for all subpopulations governed
by equation (5) results in a parallel increase of activity until
the threshold for triggering a bump is reached, starting with
the subpopulation representing the first item and ending with
the subpopulation representing the last item. To show that
the parallel ramping dynamics also preserves the information
about the relative timing of events, we compare in Fig. 4(C)
the bump-onset-asynchrony (BOA) between successive color
events for the neural trajectories in uMon

(Fig. 3, Trial 3)
and in Fig. 4(A). The amount of time between successive
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Fig. 3. Three successive sequence demonstrations starting at t = 0 and ending
at t = 700. Left: snapshots of the initial state of the perceptual field, uPon , in
the three trials. Right: temporal evolution of the activity of each subpopulation
representing the different sequence elements in the “on” sequence memory
field, uMon .

zero crossings expressed in percentage of sequence duration
is nearly identical for the encoding and the recall dynam-
ics. It is important to note that choosing a higher readout
threshold would not change the relative timing pattern. It
would, however, increase the processing delay relative to the
demonstrated event timing (with onset at t = 0) as indicated
by the vertical lines in Fig. 4(A). Different recall speeds can be
achieved by adjusting the slope βD of the ramping dynamics
(5). Fig. 4(B) shows a faster recall in which the activity
profile of all subpopulations appears to be shifted to the left
since the threshold for triggering a bump is reached earlier. A
comparison of the bars in panel (C) reveals that the pattern of
relative event timing (BOA) encoded in the activation gradient
is still preserved.
It is interesting to note that the purely perceptual acquisition
of the sequence knowledge may be directly used to repro-
duce the sequential regularities in overt motor behavior. The
prerequisite is that an associative coupling between a specific
color event and the corresponding motor response has been
already established and motor delays are negligible (for the
example of a robot learning to execute a color-coded melody
on a keyboard see [13]).
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Fig. 4. Temporal evolution of activity representing each color event in
uDon for different recall speeds: (A) βD = 0.001 and (B) βD = 0.002.
Comparison of BOAs of successive events during encoding, uMon , and during
recall, uDon , for the slow and the fast (C) condition. Note that the relative
timing pattern is preserved.

V. MODEL EXTENSIONS

A. Synchronization with external events

The results in Fig. 3 show that the active temporal antic-
ipation of events based on prior experience [45] lags behind
the demonstrated pattern of event timing. While this is not
problematic for tasks in which the planning of future events is
associated with a self-timed sequence onset, other tasks like
for instance the fluent handovers of objects to an operator
require the capacity to synchronize the motor timing with
external reference cues signaling the expected timing pattern.
Since for a given ramping dynamics, the initial baseline state
controls the time it takes to reach threshold, we adapt the
baseline activity based on a comparison between the neural
trajectories of a recalled item (prediction) and a reference
signal (perception). To explain the neural computations, we
use as a simple example the neural representations of the
first sequence element centered at position x1 in uDon and
an external color cue centered at position xE in uPon . The
initial value hD0

of the ramping activity is adapted using the
following dynamics:

dhD0

dt
(t) = βD0 [1− f(uDon(x1, t))f(uPon(xE , t))]

×[f(uDon(x1, t))− f(uPon(xE , t))] (6)

where βD0
> 0 is the adaptation rate. The adaptation takes

place during the time window when the activity of the first
population reaches a threshold and the neural trajectory of the
other population is still subthreshold. Fig. 5 shows the results
of two model simulations in which the external reference
signal is presented at t = 100 and the prediction of the first
event appears to be too early (panel A) or delayed (panel
B) relative to reference time. The resting state dynamics (6)
applied in a single trial guarantees in both cases that in the
next sequence recall the bump attractors evolve in synchrony,
as shown in panel C. Since the resting state is adapted for the
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Fig. 5. Resting state adaptation in uDon . Examples of a R event which is
recalled either too early (A) or too late (B) relative to the processing of the
reference input (dashed line). (C) After adaptation of the baseline activity,
hD0

, in the decision field, the recall occurs in both cases in synchrony with
the respective reference signal.

whole field, the neural trajectories of all sequence elements
appear to be shifted by the same amount of time. The global
adaptation thus represents an efficient means to compensate in
a single trial similar temporal offsets of all memorized items
(Fig. 3). It is also possible to apply equation (6) locally to
adjust the height of individual memory bumps of the gradient
in uMon

. In the object transfer task, for instance, motor delays
in the object grasping that may differ from object to object
have to be compensated to guarantee a fluent interaction. Fig. 6
shows an example of the formation of a “motor memory”
in which the memory strength of individual items still have
to be increased (G-event) or decreased (M-event) based on
a comparison with the temporal processing of the respective
reference signal. Fig. 6(A) compares the preshaping at time
t = 0 in uDon due to the input from uMon before (solid
line) and after (dashed line) the local h-adaptation in uMon

.
A comparison of the temporal evolution of recall for both
cases, shown in panels (B) and (C), reveals that the relative
higher pre-activation of the G-event and the relative lower pre-
activation of the M-event compensate the temporal mismatch
observed in the first sequence recall.

B. Encoding of event duration

Fig. 7 sketches an extended version of the model described
in Section II in which also the duration of color events
becomes memorized. Fluent object handovers minimize the
waiting time at the exchange position for the “giver” and the
“receiver”. It is thus important that a robotics assistant is able
to measure the expected exchange duration. The basic idea is
that during demonstration the robot camera not only registers
the onset of a specific color input at the exchange position
(object reaches position) but also the offset of the visual signal
(object leaves position). It is then straightforward to represent
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Fig. 6. Local h-adaptation of individual event memories to compensate initial
timing errors. (A) The pre-activation in the decision field, uDon (x, 0), is
compared before (solid line) and after (dashed line) the memory adaptation
of the G-event and the M-event, respectively. To better visualize the change
in preshape strength, the two relevant pre-activations are magnified. (B) Time
course of sequence recall before adaptation. The M-event is recalled too early
and the G-event too late. (C) After adaptation, all items are recalled at the
expected event times.

in the DNF model also the duration of a color event by
assuming that like for the “on” signals also the sequence of
“off” signals is represented by an activation gradient in an “off
memory” field, uMoff

. The autonomous sequence recall then
starts at tstart = 0 from a pre-activated state in the associated
“off decision” field, uDoff . Each evolving bump in uDoff
becomes destabilized through the excitatory/inhibitory connec-
tions to corresponding populations in the working memory
field uWM . The only modification for the recall of the “on”
sequence is that there are no excitatory connections from uDon
to uWM (compare Fig. 1). A bump in uWM associated with
a specific “off” signal also destabilizes through inhibitory
connections the corresponding “on” signal representation in
uDon . Fig. 8 depicts the time course of the independent serial
recall in the two decision fields, uDon (top panels) and uDoff
(bottom panels), for two different scenarios. The baselines in
both fields have been chosen, using the adaptation dynamics
(6), to guarantee a recall in synchrony with the demonstrated
timing patterns. The ramping dynamics starts in both decision
fields with the presentation of the start signal at tstart = 0.
The time courses of suprathreshold activity in uDon reflect
event duration for a sequence with temporally non-overlapping
color signals (Fig. 8(A)), and for a sequence in which the third
event starts earlier but lasts longer than the forth (Fig. 8(C)).
The latter case corresponds to an exchange of the rank order
between the two items in uMoff

relative to uMon
.

It is worth noting that an alternative way to encode event
duration is to trigger the ramp-to-threshold dynamics in uDoff
not simultaneously for all items at time tstart but sequentially
at the time when the population representation of the corre-
sponding “on” signal reaches threshold. A prerequisite is that

Fig. 7. Sketch of the extended DNF model able to learn and represent event
duration defined by the time interval between the onset and the offset of a
visual event. Note that the encoding and recall of the offset of a series of
visual events follows the same neuro-computational principles used for the
encoding and recall of the onset sequence. Dotted lines represent inhibitory
connections, solid lines excitatory connections. The arrows from the sequence
start field uStart to the memory fields uMon and uMoff

indicate that the
time window for the threshold accommodation dynamics in uMon and uMoff

is controlled by the presence of a bump in uStart. For details see the text.

the preshape-threshold distance in uDoff has been adjusted
to represent duration. This can be achieved by applying the
local version of the adaptation dynamics (6) to the memory
representations in uMoff

[46].
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Fig. 8. Temporal evolution of activity representing each item in the “on”
decision field, (A) and (B), and in the “off” decision field, (C) and (D), for
the same sequence (R-R-G-M-B) with different event durations: 20-30-30-
100-150 time steps and 20-30-200-100-150 time steps. ton = 0 is the time
of sequence onset.

Authorized licensed use limited to: University College London. Downloaded on May 25,2020 at 10:54:48 UTC from IEEE Xplore.  Restrictions apply. 



2379-8920 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2020.2991789, IEEE
Transactions on Cognitive and Developmental Systems

8

VI. SEQUENCE ERRORS AND PRECISION OF TIME
MEASUREMENTS

Traditionally, sequence recall errors and errors in estimating
temporal intervals that are typically observed in experiments
with humans and other animals have been used to distinguish
different theories of sequence learning [47], [26] and interval
timing [48], [49]. Introducing additive noise to the field
equation (1) and the baseline dynamics (5), cu > 0 and ch > 0,
allows us to address model robustness. Rather than trying to fit
detailed error patterns that may depend on the exact nature and
design of sequential tasks, we show in model simulations how
specific serial order errors and time estimation distributions
are explained by the dynamic field concepts.

A. Transposition errors

Erroneous sequence recall performance may have different
origins. It may be the result of a mistake in stimulus encoding
like in the example of Fig. 3, or may reflect a conflict on
the sequence production level like for instance the occurrence
of a repetition error when the response suppression due to
the feedback inhibition from uWM is too weak. However,
the prevalent error type found in serial recall tasks is a
simple exchange with adjacent items in the planned sequence
(transposition error, [47]). Like in other gradient based models
of serial performance, random fluctuations in the decision field
may corrupt the competition between neural representations
with similar pre-activations. To choose the noise strengths,
cu and ch, we assume that after learning 1) transposition
errors are relatively rare events, and 2) an error-free serial
recall preserves the timing information encoded in the memory
gradient. Fig. 9(A) shows a model simulation for an example
sequence with five memorized events. The noise added to
each field site causes random fluctuations in the ramp-to-
threshold dynamics but the serial order is correctly reproduced
as revealed by the transient population activation profiles in
Fig. 9(B). Moreover, as shown in Fig. 9(C), the BOAs match
well the relative timing pattern encoded in the memory gradi-
ent, with an error below 2.5% for all four intervals. Fig. 10(A)
depicts for the same example sequence and noise strengths
a model simulation with transposition error. A premature
recall of the fourth item is followed by the displaced third
item. Interestingly, the model predicts a relation between the
sequence production rate (controlled by the parameter βD of
equation 5) and the percentage of such anticipatory errors in
a given number of trials. Fig. 10(B) shows for a numerical
experiment with 200 simulations of the stochastic field model
an approximately linear increase of the error rate with speed
(r = 0.938867, p < 0.01).

B. Variability in timing of consecutive events

A hallmark of human timing of single, isolated intervals in
the range of tens of milliseconds to several seconds is Weber’s
law [50]. It states that the variability in subjective duration
estimation increases linearly with the mean of the distribution.
Entire time estimation distributions thus superimpose when the
time axis is normalized with respect to the mean. As a measure
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Fig. 9. (A) Stable activation pattern corresponding to the correct memory of
a sequence (R-R-G-M-B). (B) The temporal evolution of population activity
in uDon representing the different sequence elements is shown. The vertical
lines indicate the time of cue presentation. (C) Relative timing of successive
events in uMon and in uDon . Parameters for the noise in uDon given by
equation (8) are cu = 0.04, wexc = 1, σexc = 0.8, winh = 0, the noise
strength for the h-dynamics (5) is ch = 0.001.

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.01

0.02

0.03

0.04

0.05

0.06

A
c
ti
v
a
ti
o
n
�
�
�
�

 

Time step
0      100    200    300    400    500    600    700

5

0

-1

A
n
ti
c
ip

a
to

ry
 P

ro
p
o
rt

io
n

Speed of recall (   )

(B)(A)

��  

Fig. 10. (A) The temporal evolution of population activity in uDon repre-
senting an anticipatory error is shown (B) Correlation between the percentage
of trials with anticipatory errors and the speed of serial recall in 200 model
simulations. The noise parameter values are the same as in Fig. 9.

of relative precision, the coefficient of variation (or Weber
fraction), CV = σ/T , is usually used where σ is the standard
deviation of the underlying distribution and T is the interval
being measured or produced. There are, however, also well-
known violations of Weber’s law (for an overview see [51]).
Important for the present context, a recent study [52], in which
subjects learned to reproduce a sequence of finger taps with
the correct order and timing, found a systematic decrease in
CV as timed intervals increase. Moreover, the findings support
the notion of a continuous timing of all consecutive events in
relation to sequence onset at t = 0, as opposed to a resetting
of an interval timer at each event. In the decision field of the
stochastic DNF model, the time when the population activity
reaches threshold varies on a trial-by-trial basis due to the
continuous noise. Fig. 11(A) shows for all consecutive events
the distribution of their expected timing obtained in N = 1000
recall simulations. The overlaid normalized Gaussian fits of
the distributions do not superimpose, but reveal in line with
the experimental findings a decrease in the standard deviation
along the sequence (Fig. 11(B)). The plot of the Weber
fractions in Fig. 11(C) confirms the violation of Weber’s law.
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Fig. 11. (A) Distribution of response times for each event. (B) Overlaid
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(=coefficient of variation) as a function of mean response time. (D) Variance
as a function of mean response time squared. Noise parameters for the field
dynamics (8) are cu = 0.02, wexc = 1, σexc = 0.8, winh = 0 and the
noise strength for the h-dynamics (5) is ch = 0.02.

As suggested in [52], a fit of a generalized version of the law,
which states that the variance σ2 increases with T 2, captures
the model results well (Fig. 11(D)).

VII. DISCUSSION

In this computational study, we tested the idea that persis-
tent neural population activity that varies monotonically with
elapsed time [21] may support the rapid learning of ordinal and
interval properties of sequences. The simulations of the DNF
model show that the relative level of persistent activity among
subpopulations, established by the field dynamics in very
few demonstrations of a fairly complex sequence, robustly
encodes the order and relative timing of events. While the
two task variables, cue identity and elapsed time, share a
common neural substrate, they are controlled by different
neural mechanisms [22], recurrent interactions and threshold
accommodation, respectively. As shown in Fig. 3 and Fig. 5,
the model may account for substantial changes in the temporal
pattern while the ordinal structure remains constant. This
is in line with sequence learning experiments, showing that
the correct serial order is typically established before the
temporal structure [5]. The recall of the stored information
starts from a pre-activated state, reflecting the rank position of
each event, with a consistent increase of population activity
until a pre-defined threshold, associated with the predicted
event timing, is reached. While the preshape pattern and the
parallel activation of all subpopulations are consistent with
“ordinal models” of serial order [26], the climbing neural
activity is consistent with “ramping models” of interval timing
(for review see [53]). Most ramping models rely on balanced
feedback mechanisms on the network or the cellular level
to generate temporal integrator-like activity and adjust it to
varying temporal context [54], [55]. In the DNF model, the
time course of decaying global inhibition in the decision

field is controlled by the integration of an external input
representing the memory of the start signal. Due to the input
integration, the stochastic field model with additive noise, used
to address the precision of temporal expectations (Fig. 11),
can be discussed within a drift-diffusion decision theoretic
framework [28].
To distinguish the DNF approach from related neuro-inspired
approaches to sequence learning, it is useful to understand
the implemented neural mechanisms from a dynamical sys-
tems perspective. Rapid learning and temporal flexibility are
achieved without any change in the network structure through
manipulations of inputs and initial conditions that shape the
neural trajectory towards an existing bump attractor solution
(for discussion see [29]). Approaches based on recurrent neural
networks (RNNs), on the other hand, assume that learning
manifests in synaptic plasticity using Hebbian learning rules
(e.g., [56], [3], for an overview of modern RNNs based
sequence learning models see [57]). For instance, in the study
addressing the learning of a precisely timed finger tapping
sequence [52], the authors used a “population clock” model
to explain their experimental findings. To read out event times,
output units are trained to recognize a specific pattern of
the distributed time-varying activity in the network. Synaptic
plasticity within the RNNs is also required to guarantee a
robust and reproducible initiation of the neural trajectory by
external inputs [58]. We leave a more detailed comparison with
state-of-the-art sequence learning models based on synaptic
plasticity for future work.
The emphasis on activation based learning does not exclude
however that in real-world applications the DNF-model may
also involve structural changes. In a recent robotics experiment
[59], we have implemented the idea that the two learning
mechanisms may have complementary roles. We used fast
activation based learning to store in separate neural fields the
order of a sequential task demonstrated by users with different
order preferences. The spontaneous recall of the gradient-
based memories is then taken as input to a recurrent neural
network to gradually establish through Hebbian learning long-
term associations between subtasks. The ultimate goal was to
smoothly integrate into the network structure generalized task
knowledge from different user demonstrations. The storage of
different order-timing information in separate fields can be also
directly used to endow the robot with the capacity to flexibly
adapt to different human co-workers in a shared task. All one
has to assume is that the excitatory connections between the
various demonstration-specific memory fields and the recall
field are gated by an additional (visual) cue which identifies
a specific co-worker.
For robotics implementation of DNF models it is important to
stress that the processing of sensory information in recurrent
networks, as implemented in the perceptual field, uPon , is
known to greatly increase the signal-to-noise ratio [32]. This
contributes to a robust encoding and recall of sequential
information by the intrinsic network mechanisms even for
relatively weak and noisy inputs.
The results of the stochastic model simulations in section VI-A
confirmed a well known limitation of ordinal models that
exploit relative activation levels to represent serial order. Noise
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in the system limits the storage capacity. With the present
parameter setting, we have successfully tested up to 10 color
events that can be reliably recalled from a single gradient
established by the threshold dynamics. Since there is no differ-
ence in the processing of repeated and non-repeated items, the
order pattern can be quite complex (e.g., GGRRRRMGGM).
While a rare occurrence of noise-induced transposition errors
(Fig.10) might be acceptable for a learning robot, it is clear
that introducing more elements in a sequence of fixed duration
will increase the error probability. We are currently exploring
for our robotics work how “chunking” mechanisms [9] for
sequences with more items can be integrated into the DNF
model of rapid sequence learning to cope with this challenge
[59].
A further shortcoming of the present model is that the prede-
fined growth rates of the threshold accommodation (4) and
the ramping activity (5) are not automatically adapted to
behaviorally relevant time scales that may range from a few
seconds to minutes. One way to achieve such a temporal
scaling is to assume the existence of a neural population
that “measures” (e.g., during the first sequence demonstration)
with a fixed buildup rate of the threshold accommodation the
duration of the whole sequence defined by the start and stop
signals. The amplitude of the “measuring” bump then sets the
buildup rates with an inverse relationship, that is, the higher
the bump the shallower are the slopes of the ramps [29].
To guide sequence learning in real-world robotics applications
it is highly desirable to build object representations over a
larger number of feature dimensions that the camera is able
to detect. In [40], an architecture of coupled dynamic fields
representing simple features like color, size and aspect ratio
is presented that provides an efficient object recognition. It
could be integrated into the sequence learning model when no
distinctive individual feature dimension exists.

VIII. CONCLUSION

The motivation to search for neuro-inspired solutions to the
problem of learning a sequence with time constraints is the
efficient and highly flexible capacity of humans to coordinate
the ordering and timing of activities with co-workers in a
shared task. To guarantee a satisfying and pleasant user experi-
ence, an autonomous robot engaged in cooperative work with
a human should be able not only to process, plan and adapt
the order but also onset and duration of sensorimotor events.
Since the important role of time in cognition is to a large
extent neglected in current robotics research [16], the smooth
integration of the temporal dimension in the neurodynamics
approach holds the potential to guide the development of a
new generation of cognitive robots. We are currently testing
the learning model as part of a DNF based control architecture
for natural human-robot interaction [17], [18] in a series of
object handovers. The robot has to adapt the learned order-
timing representations to changing preferences of the co-
worker or additional task constraints while preserving a tight
synchronization of activities.

APPENDIX A
MODEL EQUATIONS

Since the model equations for the processing of the on
and the off signals are identical, we refer in the following
only to the on field equations. The dynamics of the perceptual
field uPon , the sequence memory field uMon and the memory
trace field uMT are governed by the following equations,
respectively:

τPon
∂uPon(x, t)

∂t
= −uPon(x, t) + uMT (x, t)

+Son(x, t) +

∫
wlat(|x− y|)f (uPon(y, t)) dy

−
∫
wosc(|x− y|)f (uMon

(y, t)) dy + cuξ(x, t). (7)

The noise ξ(x, t) is given by:

ξ(x, t) =

∫
wlat(|x− y|)dδ(x, t)dy, (8)

where dδ(x, t) is a spatially uncorrelated Wiener process
filtered with the Gaussian kernel wlat.

τMon

∂uMon
(x, t)

∂t
= −uMon

(x, t) + hMon
(x, t)

+uPon(x, t)f(uPon(x, t))

+

∫
wosc(|x− y|)f (uMon

(y, t)) dy, (9)

τMT
∂uMT (x, t)

∂t
= −uMT (x, t) + hMT

+λMTuMon(x, t)f(uMon(x, t)). (10)

The perceptual field uPon receives a localized visual input
Son(x, t) which we chose for simplicity as being of rectan-
gular shape with constant amplitude. The width of this input
is assumed to be much larger than the width of an individual
bump. The connection functions wlat and wosc determine the
coupling between neurons within the field. For the perceptual
field and the “on” decision field in which only one bump at a
time should evolve, we use a kernel of lateral inhibition type
given by (2). To enable multi-bump solutions in the memory
fields, we use a kernel with oscillatory rather than monotonic
decay given by (3).

The constant hMT < 0 is the global resting level for the
past memory field uMT . The parameter λMT represents the
rate at which the subthreshold pattern of the past sequence
memory is built. To ensure that the building is stronger than
the forgetting, in successive sequence presentations, the rate
λMT must be larger than 1. The threshold accommodation of
uMon

is governed by equation (4).
The dynamics of the decision field uDon , the working

memory field uWM , and the sequence start field uStart are
governed by the following equations, respectively:

τDon
∂uDon(x, t)

∂t
= −uDon(x, t) + hD(t)

+

∫
wosc(|x− y|)f (uDon(y, t)) dy

−
∫
wosc(|x− y|)f (uWM (y, t)) dy + uMon

(x), (11)
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τWM
∂uWM (x, t)

∂t
= −uWM (x, t) + hWM

+uDstate(x, t)f (uDstate(y, t))

+

∫
wosc(|x− y|)f (uWM (y, t)) dy. (12)

In simulations of equation (12), uDstate = uDon when only
the “on” sequence is recalled and uDstate = uDoff when the
“off” and “on” sequence are both recalled.

The baseline activity hD(t) evolves continuously in time
following (5), the baseline hWM < 0 is a constant.

APPENDIX B
NUMERICAL METHOD AND SIMULATION PARAMETERS

Numerical simulations were done in MATLAB using a
forward Euler method with parameters given in Table I.
We assume a finite domain with length L = 360 that is
discretized into n = 7200 equal intervals of size dx so that
dx = L

n = 0.05. To find u(x, T ) where T > 0, we discretize
time T into m equal steps of size ∆T = 1. To compute
the spatial convolution of w and f we employ the MATLAB
function conv.

TABLE I
PARAMETER VALUES OF THE FIELD EQUATIONS.

“On/Off” Perception, uPon
τPon 6
wlat(x) wexc = 4, σexc = 3.4, winh = 2
wosc(x) A = 2, b = 0.25, α = 0.052
εξ(x, t) ε = 0.025, wexc = 1, σexc = 0.5, winh = 0

“On/Off” Sequence Memory, uMon

τMon 14
hMon (x, t) βM = 0.001,

∫
Ω
f(uStart(x))dx = 2, hM0 = −1.4

wosc(x) A = 1, b = 0.72, α = 0.52

Memory Trace, uMT

τMT 6000
hMT -1.4
λMT 1.5

“On/Off” Decision, uDon
τDon 10
hD(t) βD = 0.001,

∫
Ω
f(uStart(x))dx = 2

wosc(x) A = 3.18, b = 0.9, α = 0.9

Working memory, uWM

τWM 12
hWM -1.8
wosc(x) A = 3.18, b = 0.9, α = 0.9
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