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Abstract. The continuous real-time motor interaction with our envi-
ronment requires the capacity to measure and produce time intervals
in a highly flexible manner. Recent neurophysiological evidence suggests
that the neural computational principles supporting this capacity may be
understood from a dynamical systems perspective: Inputs and initial con-
ditions determine how a recurrent neural network evolves from a “resting
state” to a state triggering the action. Here we test this hypothesis in a
time measurement and time reproduction experiment using a model of a
robust neural integrator based on the theoretical framework of dynamic
neural fields. During measurement, the temporal accumulation of input
leads to the evolution of a self-stabilized bump whose amplitude reflects
elapsed time. During production, the stored information is used to repro-
duce on a trial-by-trial basis the time interval either by adjusting input
strength or initial condition of the integrator. We discuss the impact of
the results on our goal to endow autonomous robots with a human-like
temporal cognition capacity for natural human-robot interactions.

Keywords: Neural field model · Interval timing · Neural integrator

1 Introduction

Our successful interaction with an inherently dynamic environment requires the
capacity to perceive elapsed time and to produce highly timed motor responses.
Humans and other animals are able to generate time intervals in the range of
tens of milliseconds to several seconds in anticipation of sensory events (e.g.,
a color change of a traffic light) without a clock or any external device [6,11].
Moreover, the temporal control of behavior often shows a striking flexibility
[15], allowing the adjustment of movement initiation time based on a single or
very few observations of environmental changes (e.g. a prolonged amber phase).
How the nervous system manages to flexibly process temporal information in
the service of behavioral goals is currently an active research field (for a recent
review see [14]). A recent experiment in which monkeys were trained to measure
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different sample intervals (demarcated by two time markers) and immediately
afterward reproduce it by a proactive saccade to a predefined target, reveals
new insights into the neural processing mechanisms [8]. The main finding during
the production epoch is a monotonic increase of neural population activity to a
fixed threshold value associated with saccade onset. Such a ramp-to-threshold
dynamics has been described previously in a wide range of brain areas during
timing tasks [14]. The interesting novelty of this study is the observation that
the population activity at the end of the measuring epoch (ME) predicts on a
trial-by-trial basis the buildup rate during the production epoch (PE) and con-
sequently anticipates the time of the upcoming motor response. Longer sample
intervals are associated with higher firing rates at the end of ME and shallower
buildup rates during PE.

Most computational models of ramping activity explain the accumulation
of temporal evidence as a result of a network mechanism in which positive and
negative feedback is mediated by recurrent connections between neurons [16,18].
However, well known problems with these integrator models are the requirement
to fine tune network connections and the lack of robustness to perturbations
[10]. Moreover, changes in the network structure (e.g., through Hebbian synaptic
modification) are assumed to tune the slope of ramping activity to a new sample
interval [16]. Here we use a novel model of a robust neural integrator [22] based
on the theoretical framework of dynamic neural fields [17] to test a dynamical
systems view on flexible measurement and reproduction of time intervals [15].
The basic assumption is that temporal flexibility can be readily understood in
terms of inputs and initial conditions that control the speed with which the
neural population activity in the recurrent network evolves. Our primary goal
is not to explain in detail the experimental data in [8], but to investigate in
numerical model simulations neuro-inspired processing mechanism that may be
used in the future to endow autonomous robots with a sophisticated action
timing capacity for more natural human-robot interactions [3,5].

2 Dynamic Neural Field (DNF) Model

DNF models explain the existence of self-sustained neural population activity
which is commonly believed to represent a neural substrate for higher cognitive
functions necessary to fill the gap between sensation and action. They have
been used to model aspects of working memory, decision making, planning or
learning [17] and to synthesize these cognitive skills in autonomous robots [4]. In
the applications, neural fields are typically spanned over continuous dimensions
such as direction, position or color. Following the experimental setup in [8], we
assume for the present study that the neurons in the field represent the target
of the saccadic eye movement triggered at the end of PE which is identified by
movement direction. The presentation of the target input triggers the evolution
of a localized activation pattern or bump encoding the specific parameter value.
To represent not only the nature of the input but also the accumulation of
temporal evidence we have to assume that the recurrent interactions between
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the neurons in the field are able to stabilize a bump solution with a continuum
of amplitudes. To ensure this we employ a novel field model [22] consisting of
two coupled field equations of classical Amari type [1]. It governs the temporal
evolution of two populations, u(x, t) and v(x, t), where x indicates the field
position and t represents time:

∂u(x, t)

∂t
= −u(x, t) + v(x, t) +

∫
Ω

w(|x − y|)f(u(y, t) − h)dy + S(x, t) + ε1/2dW (x, t), (1a)

∂v(x, t)

∂t
= −v(x, t) + u(x, t) −

∫
Ω

w(|x − y|)f(u(y, t) − h)dy, (1b)

where w(|x − y|) denotes the distant-dependent connectivity kernel and f(u) is
the firing rate function taken here as a Heaviside step function with threshold h.
This ensures that only neurons with suprathreshold activity, f(x) = 1 for x ≥ h,
contribute to the recurrent excitatory and inhibitory interactions. The function
S(x, t) represents the time varying external input to population u. The additive
noise term dW (x, t) describes the increment of a spatially dependent Wiener
process with noise amplitude ε � 1. It allows us, in principle, to test predictions
about the variability of time measurements, an interesting issue that goes beyond
the scope of this paper.

The lateral inhibition type connectivity kernel has a “Mexican-hat” shape
given by the difference of two Gaussians

w(x) = Aexe(−x2/2σ2
ex) − Aine(−x2/2σ2

in) − gin, (2)

with Aex > Ain > 0, σin > σex > 0, and a constant inhibition gin > 0. The
parameter values used throughout this study are Aex = 3, Ain = 1.5, σex = 1,
σin = 3, gin = 0.5.

We apply the same coupling function to the v-field with a negative sign. The
shape of the distance-dependent synaptic strengths thus represents an inverted
Mexican-hat with inhibition dominating at shorter and excitation at longer dis-
tances.

Numerical simulations of the model were done in Julia [2] using a forward
Euler method with time step Δt = 0.001 and spatial step Δx = 0.005, on a
finite domain Ω with length L = 60. To compute the spatial convolution of w
and f we employ a fast Fourier transform (FFT), using Julia’s package FFTW
with functions fft and ifft to perform the Fourier transform and the inverse
Fourier transform, respectively.

3 Simulation Results

In the following numerical examples, we consider a target input given by the
Gaussian function

S(x) = ASe(−(x−xc)
2/2σ2

S), (3)

centered at position xc = 0, with standard deviation σS = 2. The input strength,
AS , differs for the time interval measurement and the time interval reproduction
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epochs of the experiment (see below). For simplicity, we assume that the inter-
val to measure is defined by the duration of the external input and not by two
additional time markers like in the experiments. We leave the interesting issue
of potential differences in subjective time measurements with “filled” intervals
as opposed to “unfilled” intervals demarcated by time markers for future studies
[21]. The temporal integration process thus starts from a homogeneous activity
baseline when at time t = 0 the suprathreshold target input is presented. Fol-
lowing [8], we use for the numerical tests time intervals in the range of 500 to
1000 ms.

For the reproduction epoch we distinguish two situations. (1) Like for the
measurement epoch, the temporal accumulation process starts from a homo-
geneous initial condition with the presentation of the target input. The input
strength is inversely proportional to the bump amplitude reached during ME.
(2) The evolution of the population activity starts without external input from
a non-homogeneous initial condition. The pre-activation of neurons representing
the target direction is inversely proportional to the bump amplitude reached
during ME.

3.1 Measuring Time Intervals

The following simulations illustrate how the neural trajectory in the u-field
evolves in response to the localized external input specifying the target direction.
Figure 1 depicts three examples of steady state solutions that are the result of
the temporal input integration over different time intervals. The shape of the
self-stabilized bumps reflects the fact that a longer accumulation time results in
a higher bump amplitude. A closer inspection of the duration-height dependency
using more time intervals reveals that the relationship is approximately linear
(Fig. 2).

3.2 Reproducing Time Intervals - Varying Inputs

For the reproduction epoch we apply the same external input, S(x, t), like for the
time interval measurement but chose in accordance with the qualitative experi-
mental findings in [8] the input strength in dependence of the bump amplitude
reached in ME. The following relation is used for the model simulations:

AS =
1

ln(umax)
, (4)

where umax is maximum of the steady state solution in the u-field in the preced-
ing measurement epoch. Figure 3 shows the input amplitudes, AS , for the range
of measured intervals. The application of the suprathreshold input triggers in
all cases the evolution of a bump solution. Figure 4 compares the evolution of
population activity for all tested intervals. As can be clearly seen when com-
paring the slopes of the curves, input strength controls the time course of the
neural trajectories. Since the strength of the input is inversely proportional (on a
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Fig. 1. Example of three steady state solutions of the u-field of (1) resulting from
applying three sample intervals of durations dsj ∈ {500, 750, 1000}, respectively. The
amplitude of the external input given by (3) is AS = 1.75, the threshold for the
Heaviside function f(u) is h = 0.25.

Fig. 2. Left: Time courses of activity in the u-field during the interval measuring epoch.
Right: Bump amplitude at the end of the measuring epoch as a function of sample
interval length.

logarithmic scale) to interval length, population activity resulting from stronger
inputs will reach the fixed read-out threshold, hR = 2, earlier, producing shorter
time intervals for movement initiation. Conversely, localized activity integrating
weaker inputs reach this threshold later in time, resulting in longer production
intervals. After reaching the threshold, hR, the activity in both fields is reset
to the initial resting state. The production interval is measured as the interval
between the onset of the input S(x, t) at t = 0 and the time when the u-activity
reaches the threshold.

Figure 5 compares directly the values of measured and produced intervals. For
the tested range, the results reveal a very good match with a slight overestimation
of the shortest intervals and a slight underestimation of the longest intervals (see
also Table 1).
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Fig. 3. Left: Strength of the input during the interval production epoch as a function
of sample interval length. Right: Strength of the initial condition during the interval
production epoch as a function of sample interval length.

Fig. 4. Time courses of activity in the u-field during the interval production epoch.
Threshold reaching time is determined by the input strength.

3.3 Reproducing Time Intervals - Varying Initial Conditions

To test the hypothesis that an adequate choice of initial condition for the pop-
ulation dynamics of the reproduction epoch may be sufficient to account for
a flexible reproduction of measured time intervals, we proceed as follows. The
numerical simulations do not start from a homogeneous resting state. Instead,
the population centered at position xc representing the planned movement direc-
tion appears to be pre-activated at time t = 0. The amplitude of the preshape
depends on the outcome of the preceding measuring epoch in the following
manner:

u(x, 0) =
1

αe(umax)
e(−(x−xc)

2/8), v(x, 0) = K − u(x, 0), (5)

where umax is maximum activity of the steady state solution in the u-layer
reached during ME, and α is a constant scaling factor for the preshape ampli-
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Fig. 5. Production intervals as a function of sample intervals. Goodness of fit R2 = 0.99.

tude which decreases with increasing umax. The role of the constant K can be
understood by noting that the subthreshold population dynamics (f(u) = 0) has
the equilibrium solution u(x) = v(x). By choosing K > 2h one can ensure that
the dynamics of the coupled populations will reach the threshold h necessary to
drive the evolution of a bump. For the numerical tests we use K = 0.5, h = 0.22
and α = 1.25. The initial condition may be set for instance by a transient input
controlling the bell-shaped pre-activation and by a transient “go” signal (e.g.,
the second flash in the monkey experiment) controlling K and consequently the
onset of the temporal evolution at t = 0. Figure 6 shows the time course of activ-
ity of the u-population for all measured intervals. The initial preshape amplitude
predicts motor timing. Stronger preshapes are associated with shorter production
intervals. Since no external input is applied, the neural trajectory is identical for
all intervals once the threshold for the bump formation is reached. The difference
in timing is thus completely explained by the speed with which the subthreshold
trajectory reaches threshold, which in turn is determined by the activation gap
between u(x, 0) and h. Figure 7 directly compares the measured and produced
intervals. The coefficient of determination, R2 = 0.95, indicates that the numeri-
cal results fit still quite well the model of a perfect measuring/production match,
albeit with larger errors compared to the model with external input (see also
Table 1).

Table 1. Values (in milliseconds) of sample and produced intervals.

Sample interval 500 550 600 650 700 750 800 850 900 950 1000

Produced interval (external inputs) 516 579 626 679 732 777 820 858 907 953 986

Produced interval (initial conditions) 518 604 676 741 793 820 862 893 923 950 972



334 W. Wojtak et al.

Fig. 6. Time courses of activity in the u-field during the interval production epoch.
The instants of reaching the read-out threshold, hR = 0.6, vary systematically in
dependence of the initial condition of the field dynamics.

Fig. 7. Production intervals as a function of sample intervals. Goodness of fit R2 = 0.95.

4 Discussion

The results of our simulation study support the notion that neural computational
principles of flexible timing may be captured by a dynamical systems perspec-
tive. Closely balanced excitation and inhibition in a spatially structured neural
network explain the temporal integration and maintenance of external inputs.
The information about elapsed time stored in the bump amplitude can be used
on a trial-by-trial basis to reproduce the time interval either by adjusting input
strength or initial condition of the neural integrator. This affects the speed or
the onset of the neural trajectory towards the bump attractor, respectively. The
field model shares with other recurrent network models the assumption that the
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neural mechanisms for timing are closely integrated with the processing of other
stimulus attributes like for instance movement direction [12,14].

There are several open issues with the current model implementation. First
of all, since the input is continuously integrated, not only its duration but also its
strength will influence the bump amplitude and consequently the interval mea-
surement. The “strength normalization” issue can be solved by not integrating
the input directly but instead a bump from a connected neural field which is trig-
gered and deleted by transient signals (e.g., input onset and offset). In classical
neural field models, the shape of such a memory bump is exclusively determined
by the recurrent interactions within the network [1,4]. Moreover, recurrent inter-
actions are known to increase the signal-to-noise ratio, making the integration
process more robust compared to the direct integration of a potentially weak
and noisy input. Interestingly, the usage of a memory bump in the integration
process might also explain the finding that “filled” intervals are typically judged
as lasting longer than “unfilled” intervals of the same duration [21]. Since a sta-
tionary bump solution of the field equation with a lasting external input has
a slightly larger amplitude compared to a bump triggered by a brief, transient
input, the temporal integration in the “filled” condition predicts a larger bump
amplitude in the measurement field compared to the “unfilled” condition.

A second issue concerns the scaling of intervals to values outside the mea-
sured range by instruction or symbolic cues [20]. The effective bump height
during reproduction should reflect this additional information. We have recently
proposed and tested a simple and effective adaptation rule for the bump height
based on the comparison between the produced time course of population activ-
ity and the neural trajectory of a reference or synchronization signal indicating
the expected timing [23].

Our ultimate application goal for the model is to advance towards a human-
like temporal cognition capacity for autonomous robots [13]. We are planning
to test the model as part of an existing dynamic field control architecture for
natural human-robot cooperation [5]. The continuous real-time synchronization
of decision and actions with a human partner requires flexible perception and
production of time intervals, fully integrated in other cognitive processes with-
out reference to external computer clocks. A concrete example of human-robot
collaboration is an assembly paradigm in which a robot assistant hands over a
series of objects to the human worker. Findings in recent experiments directly
comparing human-human and human-robot handovers stress the importance of
temporal aspects of the robot’s actions [7,9]. Being able to adapt to the user by
minimizing the human’s waiting time is considered crucial for user acceptance
and satisfaction. Figure 8 presents a sketch of a possible model implementation in
the context of a cooperative object transfer task. The robot has first to measure
the duration of individual assembly steps. This could be achieved for instance
in a learning by demonstration paradigm in which the robot watches a human
teacher executing the assembly work (assuming that all objects are within reach,
[19]). Time measurement starts when the robot observes the teacher reaching for
a specific object and stops when he/she reaches for the next one. The input to the
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Fig. 8. Object handover task. (A) The robot has to measure the time interval, [t1, t2],
between two consecutive graspings of object O1 and object O2. (B) Visual input from
the camera system, characterizing the first object (e.g., object color), drives the evolu-
tion of a bump in an object memory field. (C) Time course of the temporal integration
of the object memory in the measurement field during the interval [t1, t2]. (D) The
measured duration is recalled in the reproduction field by integrating the memory
bump with an amplitude defined by the measurement bump in (C). Reaching the read-
out threshold is associated with the initiation of the object transfer to the exchange
position.

measurement field is thus a self-stabilized bump in a memory field representing
the object currently manipulated. During joint task execution, the robot uses the
temporal information stored in the bump amplitude to prepare the complemen-
tary action of holding out the next object for the user. The temporal integration
of the object memory bump with an amplitude given by Eq. 4 causes ramping
activity in the time reproduction field. Reaching the pre-defined activation
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threshold at the end of the interval to be estimated is associated with the ini-
tiation of the object transport to the exchange position. Due to motor delays,
the object exchange may still not be in perfect synchrony. A perceived temporal
mismatch between the expected and the realized event timing (e.g., user picking
object from robot hand) can be used to adapt in a single trial the initial resting
state in the reproduction field in order to compensate systematic motor delays
[23]. We are currently studying how the choice of the time scale of the robust
neural integrator (τ = 1 in the present study) affects precision timing for time
intervals that are relevant for human-robot interactions.
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