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Abstract. Driving a car is often a routine activity that includes visiting
the same locations at about the same time on a certain day of the week.
Here, we present a learning system based on Dynamic Neural Fields that
allows an intelligent vehicle to acquire sequential and temporal informa-
tion about daily driving routines. Learning is fast, implicit (no need to
specify destinations in advance), continuous, and can be adapted to dif-
ferent temporal scales. The learned information can be recalled to predict
the driver’s destination intention, when to arrive at a specific location
and when to leave there. Importantly, the system allows to learn and
recall multiple routines corresponding to different drivers and different
days. This personalized information can be used for planning the next
trip for every user of a shared vehicle.

Keywords: Neurocomputational model · Learning driver routines · Space
and time prediction · Dynamic neural field.

1 Introduction

Advances in technology used in the vehicle’s cockpit systems have contributed
to the increase of spatiotemporal information on human mobility, opening new
opportunities in the research topic of human-machine interaction. For a conve-
nient human-machine interaction, an intelligent system such as a smart vehicle
must be able to learn and make decisions based on the received data. Nowa-
days, the Global Positioning System (GPS) is often used to guide a driver to
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a destination that he/she enters into the system. Future vehicles might be able
to predict where a specific driver wishes to go as well as the time the driver
should arrive or depart [15]. Human mobility is characterized by a high level
of spatial-temporal regularity [3,11,24], a tendency to visit specific locations at
specific times [11,14,18,23], and a significant tendency to spend most of the time
in a few locations [23]. Driving a car is typically coupled with daily routines such
as going to work every weekday or routines across other temporal scales such as
going to the gym on specific days of the week. Profiling the mobility routine of
a specific driver can be used by intelligent navigation systems to support indi-
vidual traveling by for instance warning the driver about traffic conditions that
might cause a late arrival at the specific destination. Since a car might be shared
by several users, it is important to keep in mind that the system should be able
to make predictions according to the learned routines of different drivers. Per-
sonalization for adapting to different drivers is an important aspect in designing
advanced driving assistance systems. The focus of research in this area has been
thus far on systems that address safety issues by monitoring the human driving
behavior and style (for recent reviews see [12,13,26]). The potential of personal-
ization should be also taken into account in profiling mobility routines to reduce
the cognitive load of the driver and ensure optimal user experience.

Several different approaches, most of them statistical models based on big
data [2,21], have been proposed for predicting the next location in human mo-
bility. Traditional Markov models work well for a specific set of behaviors but
destinations need to be fixed in advance. Recently deep learning techniques have
been applied for an accurate prediction of user destination [5,25]. In [5] a Long
Short-Term Memory recurrent neural network is used not only to predict drivers’
destinations but also respective departure times. In this framework, the desti-
nations (places visited by a driver with significant frequency) are first identified
using a clustering algorithm, and the updating of new destinations requires the
learning system to be restarted. The deep learning approach in [25] is based on
a division of the spatial map in grids, each with a specific ID number, and the
IDs of all possible destinations are predefined at the beginning of the learning
process. Although the model takes into account the temporal characteristics of
the GPS trajectories, this information is not used to predict departure or arrival
times.

In [8] a model based on the theoretical framework of Dynamic Neural Fields
(DNFs) was proposed that is able to learn ordinal and temporal aspects of a
daily driver routine. The learning is implicit (driver does not need to be asked
for his/her destinations), continuous, and can be adapted to different tempo-
ral scales. The theoretical framework of DNFs has been proven to provide key
brain-inspired processing mechanisms to implement working memory, decision
making, and prediction in cognitive systems (e.g. [19,20]), including the learning
of the temporal and ordinal properties of sequential tasks [7,10], and in recent
work, the temporal integration of GPS coordinates for the identification of stop
locations [9]. The central idea of DNF models is that continuous-valued informa-
tion, such as for example position in space, is represented by localized activity
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patterns (or bumps) in a network of recurrently connected neurons tuned to the
continuous dimension. Initially driven by transient input signals, a bump be-
comes self-sustained due to the recurrent interactions within the network. The
bump attractor thus encodes in its position the memory of a specific input value.
An additional threshold accommodation dynamics ensures that the bump ampli-
tude increases monotonically with elapsed time since input onset. In response to
an entire input sequence, the field dynamics develops a multi-bump pattern with
an activation gradient over neural subpopulations which carries the information
about the temporal order and relative timing of the sequential events.

In this paper, we present an extension of our previous DNF model of learning
daily routines [8]. The most significant advances are the integration of a long-
term memory that supports the continuous up-dating and consolidation over
weeks of the memory of driving experiences at a specific weekday, and the ca-
pacity to learn and distinguish the routines of different drivers. The proposed
mechanism supports 1) the encoding and recall of different routines according
to the driver and the day, 2) the continuous adaptation of these routines (e.g.,
a destination can be added or deleted without the need to restart the system),
3) the prediction of the driver’s destination intention, 4) the prediction when
she/he intends to arrive, and 5) the prediction how long the stay duration will
be.

In what follows, we begin with a description of the DNF model and its
mathematical details in Section 2. The results of model simulations of the routine
learning and prediction processes based on recorded real-world GPS trajectories
are discussed in Section 3. Conclusions and future work are presented in Section
4.

2 The model

2.1 Model description

Dynamic neural fields (DNFs) have been first proposed as a theoretical frame-
work to analyze the dynamics of pattern formation in neuronal populations [1].
They have been later used to model cognitive functions such as working mem-
ory, decision making or motor planning and to synthesize these functions in
autonomous robots [4]. Neural field models, formalized by integro-differential
equations, represent a specific class of recurrent neural networks with a connec-
tivity function depending on the distance in parametric space between neurons
tuned to continuous metric dimensions. In the present application, the dynamic
fields are spanned over the two spatial GPS coordinates latitude and longi-
tude. The recurrent excitatory and inhibitory interactions within the network
support the existence of self-stabilized bumps of activity which are initially trig-
gered by sufficiently strong inputs. The bump position represents the memory
of the GPS coordinates of a stop location of a given driver. A stop here stands
for a visited location where the car arrived at time toff and left at time ton,
S = (lat, long, toff , ton), where (lat, long) represent the latitude and longitude
coordinates corresponding to the centroid of the respective bump. Let Si and
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Sk be two stops where the index indicates different days, then i = k (that is,
Si and Sk represent a stop at about the same location and time of the day)
if the haversine distance between the two sets of coordinates are below a dis-
tance threshold δd, that is, distik = disthaversine(lati, longi, longk, latk) < δd,
and |toffi

− toffk
| < δt, where δt represents a time threshold. The haversine

distance [22] between two points, p1 and p2, with coordinates (lat1, long1) and
(lat2, long2), respectively, is defined as

disthaversine(p1, p2) = 2R

(√
a(p1, p2)

a(p1, p2)− 1

)
, (1)

where R is the Earth’s radius and

a(p1, p2) = sin2

(
lat2 − lat1

2

)
+ cos(lat1) cos(lat2) sin2

(
long2 − long1

2

)
. (2)

Fig. 1: Schematic view of the model architecture with several interconnected
neural fields implementing sequence learning, long term memory and sequence
recall. For details see the text.

Figure 1 illustrates an overview of the model architecture consisting of several
interconnected neural fields. The architecture can be divided into three function-
ally different parts running in parallel: sequence learning, long term memory and
sequence recall.
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The Sequence learning part processes incoming GPS inputs and memorizes
the stop locations of a certain driver at a specific weekday. The inputs are given
by the GPS coordinates (latitude and longitude) when the vehicle is switched off
or on, representing the coordinates of a destination at the time of the car’s arrival
or departure, respectively. We further assume that additional inputs identify the
specific user and the day of the week. For consistency, we also use bumps to
store this discrete information in an user identity field, uID and a weekday field,
uDAY . The fields are divided in several distinct regions which receive localized
input in form of a Gaussian carrying the user and weekday information.

To simplify the following model description, we refer to the “arrival” signal
only. At the moment when the driver switches off the car at a specific location,
the GPS input drives the evolution of a bump in the latitude field uElat

and the
longitude field uElong

. Each of these bumps triggers through excitatory connec-
tions the evolution of a localized activity pattern at the corresponding sites in the
latitude and longitude sequence memory fields, uSMlat

and uSMlong
, respectively.

Inhibitory feedback from uSMlat
to uElat

(from uSMlong
to uElong

) destabilizes
the existing bump in the encoding field. This ensures that newly arrived local-
ized input to uElat

(uElong
) will automatically create a bump at a different field

location even if the position information is repeated during the course of the day.
A series of GPS coordinates at the moments when the car is switched off creates
a multi-bump pattern in uSMlat

and in uSMlong
with the strength of activation

decreasing from bump to bump as a function of elapsed time since the start of the
routine. This activation gradient over subpopulations is achieved by applying a
threshold accommodation dynamics to the self-sustained activity patterns which
lead to a continuous increase of the bump amplitude as a function of elapsed
time [10].

The Long Term Memory (LTM) part stores in separate fields multiple mem-
ories of daily routines corresponding to different drivers and different days of the
week. According to the information represented by a bump in the user detec-
tion and weekday fields, the corresponding consolidation fields, uuserClat

and uuserClong
,

and the associated LTM fields, uuserLTM lat
and uuserLTM long

, receive excitatory input
from uE and uSM . The consolidation field controls whether a new stop loca-
tion becomes stored in LTM as part of a daily routine or whether a memorized
stop location will be forgotten since the driver has changed the routine. When
a stop event occurred with a certain frequency, the accumulated localized ac-
tivity in uuserClat

(uuserClong
) is above threshold. The combined excitatory input from

uuserClat
(uuserClong

), uElat
(uElong

) and uSMlat
(uSMlong

) is then able to create a mem-
ory bump in the LTM fields. If on the other hand a bump exists in uuserLTM lat

(uuserLTM long
) but the activity in uuserClat

(uuserClong
) is subthreshold due to a continu-

ous activity decay without excitation from the encoding field uElat
(uElong

), the
LTM bump becomes suppressed mediated by inhibition. There exist also excita-
tory connections from the memory fields back to uElat

and uElong
. This feedback

excitation causes a pre-activation of neural populations in the encoding fields
representing previously visited locations. Functionally, this pre-shaping mecha-
nisms increases the robustness of the encoding process in the face of noisy and
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potentially incomplete GPS inputs. The routine duration field, uRD, receives
excitatory input from the weekday field, uDAY , at the beginning of the day. The
amplitude of the resulting self-sustained activity pattern increases continuously
due to applied threshold accommodation dynamics. At the end of the day, the
bump amplitude represents a time span of 24 hours. The amplitude value is used
to define the baseline activity level in the decision fields.

In the Sequence Recall phase, the stored information is used to make pre-
dictions about the driver’s intended destinations and the time of arrival. The
decision field uDlat

(uDlong
) receives the activation gradient stored in uuserLTM lat

(uuserLTM long
) as subthreshold input. A continuous increase of the baseline activ-

ity in uDlat
(uDlong

) brings all subpopulations closer to the threshold for the
evolution of a self-stabilized bump. The moment when the activity of the pop-
ulation with the highest pre-activation in the decision field reaches threshold is
used to predict the location and arrival time of the first destination. Excitatory-
inhibitory connections between associated populations in uDlat

(uDlong
) and the

working memory field uWMlat
(uWMlong

) guarantee that a bump representing
the coordinate of a predicted stop event evolves in the working memory field
which then suppresses the suprathreshold activity in the decision field. This dy-
namic process continuous until the population with the lowest pre-activation has
reached threshold and the prediction about the last stop event has been stored
in working memory.

2.2 Model equations

The population dynamics in each field is governed by an integro-differential
equation first proposed and analyzed by Amari [1]

τ
∂u(x, t)

∂t
= −u(x, t)−h+I(x, t)+

∫
Ω

w(|x−x′|)f(u(x′, t)−θ)dx′+ε1/2dW (x, t).

(3)
The variable u(x, t) represents the activity at time t of a neuron at field position x
in a spatial domain Ω ⊂ R. The constant τ > 0 defines the time scale of the field
dynamics. Term I(x, t) represents a time-dependent, localized input centered at
site x, and h > 0 defines the stable resting state of a field without external
input. The distance-dependent connectivity function w(|x− x′|) determines the
interaction strength between neurons at positions x and x′. An example is a
kernel of lateral inhibition type given by a Gaussian function minus a constant

wlat(x) = Alate
(−x2/2σ2

lat) − glat, (4)

with Alat > glat > 0 and σlat > 0. We use the lateral inhibition kernel in
the fields in which only one bump at a time should evolve (e.g., uE and uR)
[1]. To enable stable multi-bump solutions in the memory fields, an oscillatory
connectivity function [6,16] is used:

wosc(x) = Aosce
−b|x|(b sin |αx|+ cos(αx)), (5)
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where Aosc controls the amplitude and parameters b < α ≤ 1 control the rate at
which the oscillations decay with distance and the zero crossings of w, respec-
tively.

The firing rate function f(u) is taken here as the Heaviside step function
with threshold θ = 0. Finally, the additive noise term dW (x, t) describes the
increment of a spatially dependent Wiener process with amplitude ε� 1.

The activation gradients in uSMlat
and uSMlong

encode the serial order of
visited locations, that is, the earlier a certain location was visited, the higher is its
memory bump. Since the bump amplitude increases as a function of elapsed time,
the difference in bump amplitude of two successive destinations represents the
temporal interval separating the two visits. To establish the activation gradient,
we consider the following state-dependent dynamics [7,10]

τh
∂hSM (x, t)

∂t
= κf(uSM (x, t)) + (1− f(uSM (x, t)))(−hSM (x, t) + hSM0

) (6)

where hSM0
defines the baseline activation to which hSM relaxes without suprathresh-

old activity at position x, κ > 0 is the growth rate when it is present and τh
is time scale of the dynamics. The time window for the buildup is proportional
to the total routine time, which in the present example is assumed as 24 hours.
The h-level accommodation dynamics begins at t = tstart (here, at 0:00) and
ends at t = tend (here, at 24:00).

To ensure that only the places visited with some minimal frequency are mem-
orized and that the places no longer visited are forgotten, the consolidation field
uC governed by equation (7) integrates the input from uE with a simple linear
dynamics. It approaches with the growth rate λbuild the value a > 0, represent-
ing the maximum level of activation in uC . When there is no suprathreshold
activity in uE , the activity of excited neurons decays with a slower rate λdecay
towards the resting level hc < 0:

∂uC(x, t)

∂t
= λbuild(−uC(x, t) + a)f(uE(x, t))

+ λdecay(−uC(x, t) + hc)(1− f(uE(x, t))).
(7)

In the examples of user and weekday specific routines presented here, the
growth and decay rates are chosen in such a way that 1) accumulated localized
activity in uC is above threshold when a certain stop point has been visited in
two consecutive weeks, and that 2) the activity falls below threshold when the
predicted visit has not been realized in two consecutive weeks at the specific
weekday. Note that longer integration and forgetting periods could be realized
by adapting the parameters λbuild and λdecay accordingly.

A dynamic build-up of a long term memory of routines is performed in
uuserLTMlat

(uuserLTMlong
) through excitatory connections from uSMlat

( uSMlong
), uElat

( uElong
) and uClat

( uClong
). The LTM fields receive the following input:

Iuser(x, t) = Duserf(uC(x, t))f(uE(x, t))uSM (x, t) (8)
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where

Duser = max
AID

(f(uID(x, t)− θ))× max
ADAY

(f(uDAY (x, t)− θ)), user = 1, 2, . . . , n,

(9)
and AID and ADAY represent the regions in the fields uID and uDAY which
receive the information about the user identity and the working day, respectively.
Since Duser = 1 when bumps exist in both fields and 0 otherwise, the parameter
Duser acts as a multiplicative signal that gates the input from the encoding and
sequence memory fields to the associated LTM fields.

The gradient in the LTM fields is established by the following state-dependent
dynamics:

τh
∂hLTM (x, t)

∂t
= (1− f(uLTM (x, t))) (−hLTM (x, t) + hLTM0)

+f(uLTM (x, t))f(uC(x, t))f(uSM (x, t))(−hLTM (x, t) + hSM (x, t))

+f(uLTM (x, t))(1− f(uC(x, t)))(−hLTM (x, t) + hLTMinih
)

(10)

where hLTM0
< 0 is the baseline activity to which hLTM converges without

suprathreshold activity at position x. The negative constant hLTMinih
< 0

represents the stable state to which hLTM converges at sites with a bump in
uLTM (x, t) and no suprathreshold activity in uC(x, t). This ensures that the
memory of a stop location that is not part of the daily routine anymore will
be erased. At positions x with suprathreshold activation in the three fields
uC(x, t), uLTM (x, t) and uSM (x, t), the h-value hLTM (x, t) tends to hSM (x, t).
The bump amplitude in uLTM (x, t) thus equals the corresponding bump am-
plitude in uSM (x, t). This means that the relative timing information recorded
during the last routine execution is preserved in long term memory.
The recall of the learned routine is performed by the four fields shown on bottom
of Figure 1. The decision field uDlat

(uDlong
) receives the multi-bump patterns

from uuserLTMlat
(uuserLTMlong

) as subthreshold input

Iuser(x) =

n∑
user=1

Duseru
user
LTM (x). (11)

The coefficient Duser given by (9) ensures again that only the gradient that
corresponds to the current driver and day of the week contributes to this input.

To recall the order and timing information stored in the activation gradients,
we apply a linear dynamics for the resting level hD in uDlat

(uDlong
) which brings

all pre-activated subpopulations closer to the threshold 0:

dhD(t)

dt
= κD, hD(t0) = hD0

< 0, (12)

where κD defines the constant growth rate.
The initial value hD0

is chosen equal to the amplitude of the bump in the
duration field, uRD, from the last routine execution. Since the amplitude of this
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bump represents a routine time span of 24 hours, the representation of the stop
events reaches the threshold 0 exactly at the predicted event time. The initial
resting state could be chosen slightly larger to ensure that the diver assistant
anticipates (e.g., by ta = 10 minutes) the true arrival time. Note that we have
proposed in our previous work a learning mechanism that allows the system to
autonomously adapt its internal event timing encoded in the bump amplitudes
based on environmental feedback [10].

Numerical simulations of the model were performed in MATLAB using a
forward Euler method. To compute the spatial convolution of w and f we em-
ploy a fast Fourier transform (FFT), using MATLAB’s in-built functions fft
and ifft to perform the Fourier transform and the inverse Fourier transform,
respectively.

3 Results

To test the proposed model, we consider a previously recorded dataset consisting
of 11 consecutive weeks of a real-world driving scenario. It represents the routines
of two different drivers from the Portuguese city Guimarães sharing the same car.
To identify distinct stop locations in the dataset, we apply threshold values for
the location radius (δd = 200 meters) and the stay duration (δt = 30 minutes).
Furthermore, we assume that a stop event is part of daily routine if it happens
at least twice in consecutive weeks and that the location is forgotten when a
prediction is not confirmed twice in a row. To generate predictions, a routine
for each day and each driver has to be executed at least three times. To directly
compare the real with the predicted arrival times, we do not apply any forecast
period, that is, a perfect prediction matches the exact arrival time.

As an example of a daily routine of one of the drivers, Figure 2(A) shows a
map with a series of five destinations where the car was switched off, one place
(the school) was visited twice. The memories of the GPS coordinates, latitude
and longitude, are represented in the activation gradients in uSMlat

(left) and
uSMlong

(top), respectively. Supposing that this daily routine does not change in
space and time, running the routine three times results in long term memories
(not shown) reflecting the order and the timing of the arrival/departure destina-
tions. Fig. 2(B) compares the exact point in time in which the driver arrives at
and departures from a specific destination (vertical lines) with the time course
of the maximal activation of the corresponding population representation in the
decision fields, where uDlong

is taken as example. As can be seen when consid-
ering the reaching of the threshold as read-out time, there is a perfect match.
The temporal difference between successive time courses indicates the interval
timing between successive arrivals or departures. The information about the stay
duration at a specific destination can be extracted by comparing the respective
time courses of arrival and departure. In the specific example considered in Fig.
2(B), the stay duration predictions at stops S1 to S5 are: S1: 21 minutes, S2: 7
hours and 54 minutes, S3: 20 minutes, S4: 60 minutes and S5: 24 minutes.
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Fig. 2: (A) Map of part of Portugal generated from Google Maps showing a
sequence of arrivals of Driver A and the respective activation gradients in the
memory fields uSMlat

(left) and uSMlong
(top). (B) Time courses of the activation

at the bump centers in the decision field uDlong
.
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As an example to compare daily routines of the two drivers, we consider 11
Monday trajectories of driver A and 8 Friday trajectories of driver B. Looking at
the time toff when the driver has switched off the car, Table 1 compares the real
and predicted arrival times of each stop for both driver routines. Driver A stops at
locations S1, S3, S4 and S5 on all Mondays. From the third Monday on, the stops
are correctly predicted and the foreseen arrival times over the weeks closely follow
the observed variations in timing of the driver trajectories. For stop locations
such as S1 with a relatively small variation of real stop times, the differences
between predicted and realized arrival time is small (Figure 3(A)). Adding a
fixed forecast period that takes into account this variability would guarantee
that a driver assistant anticipates in all cases the real stop event. Stop location
S6 is an example in which the arrival time appears to be significantly delayed in
one week compared to the habitual timing pattern (compare Mondays 4 and 5 in
Figure 3(C)). Since the arrival delay does not represent a consistent change in the
routine and the timing of the current prediction reflects the observed timing of
the preceding routine execution, a relatively large prediction delay manifests in
the following week. Stop S2 did not occur on all Mondays, but this stop location
was not completely forgotten since its memory is refreshed in the week directly
following a trajectory without visit (e.g., weeks 6 and 7 in Figure 3(B)). Driver A
stopped at S5 only twice in different weeks. This stop event thus does not enter
the long term routine memory and no prediction is made. Driver B stops at
locations S1, S2, S3, and S5 on all Fridays. From the third Friday on, these four
stops are correctly predicted with a timing pattern that closely matches the mean
and standard deviation of the observed pattern. Implementing a short forecast
period in the field dynamics would again ensure that the prediction anticipates
in all cases the real arrival time. Stop S4 happened only on the first three Fridays
(Figure 3(D)). From the third to the fifth Friday the systems incorrectly predicts
this location as being part of a routine, and in the sixth week it appears to be
forgotten.

Table 1: Real and predicted times in minutes of two different day routines from
two different drivers.

Monday routine of driver A (11 weeks) Friday routine of driver B (8 weeks)
Stops NS Real time NP Predicted time Stops NS Real time NP Predicted time
S1 11 526.5 (±1.81) 9 525.8 (±1.97) S1 8 520.0 (±4.11) 6 518.3 (±5.16)
S2 7 542.1 (±2.19) 9 541.1 (±2.66) S2 8 539.5 (±5.88) 6 537.0 (±6.95)
S3 11 550.1 (±6.45) 9 549.2 (±7.18) S3 8 1116.3 (±8.40) 6 1117.0 (±9.67)
S4 11 1113.1 (±2.07) 9 1112.8 (±2.87) S4 3 1132.0 (±3.61) 3 1133.4 (±3.64)
S5 2 1129.5 (±12.02) 0 − S5 8 1261.6 (±5.21) 6 1262.5 (±5.48)
S6 11 1134.0 (±7.35) 9 1134.0 (±7.67) −

Data is presented as mean (± standard deviation). NS and NP are the number
of weeks that the location at about the same period of the day was visited and
predicted, respectively.
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Fig. 3: Real and predicted arrival times in minutes of several stops from 11
Monday trajectories of driver A (A-C), and from 8 Friday trajectories of driver
B (D).
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4 Conclusion

In this paper, we have presented a Dynamic Neural Field approach to learn-
ing and memorizing ordinal and temporal properties of different driver routines.
The learning is continuous starting with the first driving trajectory, happens
implicitly without direct driver feedback, and can be scaled to different time
periods (e.g., hours, days or weeks). The experiments with real GPS trajectory
data validate the model architecture for two drivers sharing the car at different
weekdays. The results confirm that the system correctly predicts in most cases
the where and when of driver destinations. Prediction errors happen in cases of
an exceptional, one-time deviation from the routine behavior. The activation-
based learning mechanism implemented in the neural network also supports a
fast adaption to consistent changes in the routines when predictions fail more
than once or new destinations should be integrated in an existing routine. This
contrast with many other neural network approaches (e.g., deep learning [5,25])
to learning sequential tasks which store the acquired information in synaptic
weights. Weight-based learning typically requires large training sets and can be
computationally very heavy. Moreover, personalized systems needs to be contin-
uously updated and improved using cues from driver interaction. Such lifelong
learning from non-stationary data distributions remains a long-standing chal-
lenge for machine learning and neural network models [17].

The integration of the long term memory with other factors such as traffic
conditions in GPS-based navigation systems could be used to smarter route
selection/recommendation without requiring input from the driver. Furthermore,
the driver could benefit from advanced warnings about the possibility of arriving
late at the next destination.

In future work will test the proposed model architecture in more complex
driving scenarios, in the scope of the joint project ”Easy Ride:Experience is
everything” which we have with the car industry.
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13. Hasenjäger, M., Wersing, H.: Personalization in advanced driver assistance systems
and autonomous vehicles: A review. In: 2017 ieee 20th international conference on
intelligent transportation systems (itsc). pp. 1–7. IEEE (2017)
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