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Abstract—Many of our everyday tasks require the control of
the serial order and the timing of component actions. Using the
dynamic neural field (DNF) framework, we address the learning
of representations that support the performance of precisely
time action sequences. In continuation of previous modeling
work and robotics implementations, we ask specifically the
question how feedback about executed actions might be used by
the learning system to fine tune a joint memory representation of
the ordinal and the temporal structure which has been initially
acquired by observation. The perceptual memory is represented
by a self-stabilized, multi-bump activity pattern of neurons
encoding instances of a sensory event (e.g., color, position or
pitch) which guides sequence learning. The strength of the
population representation of each event is a function of elapsed
time since sequence onset. We propose and test in simulations
a simple learning rule that detects a mismatch between the
expected and realized timing of events and adapts the activation
strengths in order to compensate for the movement time
needed to achieve the desired effect. The simulation results
show that the effector-specific memory representation can be
robustly recalled. We discuss the impact of the fast, activation-
based learning that the DNF framework provides for robotics
applications.

I. INTRODUCTION

Fluent execution of many of our everyday sequential
activities requires the integration of information about both
the temporal order and the timing of component actions. This
is most obvious in skills like sports and music where a series
of precisely timed movements has to be executed to guarantee
a successful performance. But also in other routine tasks like
for instance handing over an object to another person, the
timing of the reach, grasp and place actions is fundamental
for the smoothness and skillfulness of the joint behavior. The
learning mechanisms that make such temporally extended
behaviors possible are a matter of debate. On the basis
of the observed tight coupling between the temporal and
ordinal dimensions of serial behavior, it has been argued that
a single learning system would be responsible for forming
a fully integrated representation for sequencing and timing
[6], [12], [17]. On this view, memory for the timing of
events would also define the sequential event structure and
vice versa. However, several experimental findings have been
interpreted as evidence that the timing information may be
stored independently of the order of actions it was combined
with during training [21]. For instance, learning studies report
a two stage learning process in which the acquisition of the

ordinal sequence is typically much faster than the acquisition
of the temporal sequence [15]. Moreover, once learned with
a certain timing, the ordinal sequence of movements can
be expressed with different movement rates, preserving the
relative but not the absolute timing of component actions.
Significant changes in the temporal pattern of the sequence
may thus occur without affecting the ordinal structure.
In previous work we have developed a Dynamic Neural Field
(DNF) model [10], [11] of sequence learning with a twofold
goal in mind: 1) to address the open experimental question to
which extent temporal and ordinal learning are independent
processes, and 2) to use the insights from the modeling work
to endow autonomous robots with the capacity to efficiently
learn order and timing of perceptual-motor sequences.
The aim of the present paper is to extend our previous
work by specifically addressing the important role of sensory
feedback about executed actions for the learning process.
Dynamic Neural Fields [2], [8] provide a rigorous mathe-
matical framework to explain the formation of self-sustained
activity patterns in neural populations which are the basis of
the fast, activation-based learning implemented in the model.
A memory layer represents the serial order and relative timing
of events as an adjustable activation gradient over neural
populations encoding instances of a cue (e.g., color, position
or pitch) which guides sequence learning. The strength of
activation of each event is a function of elapsed time since
sequence onset. The serial order can be recalled with the
correct timing by integrating in a decision layer the tonic
input from the memory layer with a release of proactive
inhibition [22] controlling the time to movement onset [10].
We have tested the DNF model in a real-world experiment
in which the humanoid robot ARoS first memorizes a short
musical sequence played by a human by watching color
coded keys on a screen and then tries to execute the sequence
on a keyboard from memory without external cues. ARoS
was able to learn and represent in the memory gradient
first the serial order and subsequently the precise timing
of observed events in very few demonstration-execution
cycles [11]. However, the correct sequence recall from a
perceptually acquired memory was only possible since the
fingers of the robot hand were positioned directed over the
keys. ARoS could thus execute the keystrokes at the expected
time with negligible (and constant) motor delays. Here, we



present an extension of the DNF model that is able to
learn effector-specific sequence representations that take into
account varying movement times of component actions by
integrating sensory and/or proprioceptive feedback. Evidence
from neurophysiological studies suggest that abstract and
motor-related representations of order and timing exist in sep-
arate but closely interacting neural structures [19]. Consisting
with this hypothesis, the model implements the idea that the
detection of a mismatch between the expected timing of the
memorized perceptual event and executed timing of the same
event drives the adjustment of the memory strength of the
respective motor population. We show results of the learning
and adaptation process in model simulations and discuss the
impact of the findings for future robotics implementations.

II. MODEL DESCRIPTION

An overview of the model architecture consisting of several
coupled dynamic neural fields is presented in the Fig. 1.
The three fields on top implement the learning and memory
of perceived sequential events. The five fields on bottom
implement a novel motor-related learning mechanism that
allows the cognitive system to adapt the order and timing of
actions based on sensory feedback about the executed actions.
This functionality of the perceptual sequence memory has
been already tested in real-world experiments in which a
human teacher demonstrates a sequence to the robot and
the robot tries to recall this sequence from memory without
any external cues. Several demonstration-execution cycles are
usually necessary to ensure that the stored information is
correct. Although different sources of sensory input may have
been used as well (e.g., auditory) we refer in the following to
the input from the vision system to have a concrete example
in mind. In the robotics experiments, sequence learning was
guided by a color cue, the fields are thus spanned over the
dimension color.
The vision system provides the sensory information that is
represented by neural populations in the perception field,
uPER, which in turn triggers through excitatory connections
(solid line) the evolution of localized activity pattern of
corresponding populations in the perceptual sequence mem-
ory field, uMEM . Inhibitory connections (dashed line) from
uMEM to uPER destabilize the bump in the perception
field, which ensures that newly arrived sensory information
will be encoded at a different field site in uPER, even
if that information is repeated during the course of the
sequence. The Past sequence memory field, uPA receives
weak excitatory input from uMEM and as a result a memory
trace of successive sequence demonstrations in uPA builds
up. The functional role of this memory trace is to preshape
neural populations in uPER creating an expectation about
upcoming perceptual events. This significantly speeds up the
processing of the external input, which may be noisy and
ambiguous, and is essential to adjust the sequence memory
in successive demonstrations (for details see [11]).
As the result of the perceptual learning process, uMEM

stores all sequence elements with the strength of activation
decreasing from element to element as a function of elapsed

Fig. 1. Schematic view of the DNF architecture with several interconnected
fields implementing perceptual sequence memory, motor sequence memory
and sequence recall.

time since sequence onset. Fig. 2 shows an example of a
sequence memory with 5 perceptual events (top panel). The
stored information of order and timing can be overtly (in
the robotics experiment) or covertly (in the simulation layer)
recalled as shown by the time course of neural population
activity encoding the different events (bottom panel). Note
that the onset time of the suprathreshold population responses
is aligned with the timing of the corresponding external
events (vertical bars).

The perceptual memory represents abstract, effector-
independent sequence information. During sequence
execution, the movement onset time has to be adjusted
to compensate for the duration of the effector movements
that are supposed to achieve the desired action effect at
the expected time. Starting with the bias from the already
acquired sequence knowledge, the dynamic interactions of
neural populations in the motor memory and recall layers
in a series of adaptation trials realize this goal. At the
beginning of the first execution trial, the Action Onset
Memory (uAMEM ) equals the stored pattern in uMEM , that
is, the multi-bump in uAMEM represents the serial order
and the expected relative timing of events. In the Internal
Simulation Field (uIS), a covert recall of the perceptual
memory (uMEM ) is performed, whereas the Action Onset



Fig. 2. Self-stabilized multi-bump pattern representing sequence memory
(top). Time course of population activity during sequence recall (bottom).
Vertical lines indicate the timing of the external events.

Field (uACT ) encodes overt sequence planning. The two
fields receive a multi-bump pattern from uMEM and from
uAMEM , respectively, as a subthreshold input. Continuous
increase of baseline activity in the preshaped fields uIS and
uACT brings all neural populations closer to the threshold
necessary to trigger the evolution of a self-stabilized bump.
When the most active population in uACT reaches this
threshold, the corresponding motor response (i.e. effector
movement) is initiated. During movement execution, sensory
or proprioceptive feedback is registered and used as an input
to the Feedback Field (uF ) which represents this input as
a bump. The process of adaptation of the initial memory
representation is based on a comparison between the time
course of suprathreshold activity in uF and uIS to detect
a potential mismatch between the expected timing and the
currently executed timing of events. To compensate this
mismatch, we adopt a simple learning rule proposed in
[1] (see the pseudo-code below) to adapt the resting level
in uAMEM as a function of the activity states in uF and uIS .

if uIS > 0 and uF < 0 then
hAMEM = hAMEM/(1 + β) ∗ f(uIS) /faster

else if uIS < 0 and uF > 0 then
hAMEM = hAMEM/(1− β) ∗ f(uF ) /slower

else
hAMEM = hAMEM

end if

The adaptation of the resting level h can be performed
globally, that is, the h value is changed for the whole
field, leading to an equal temporal adjustments for all event
representations, or locally at field sites with suprathreshold
activity, leading to temporal adjustment of the currently
processed action only. When the movement is executed with
a delay, i.e. the suprathreshold activity appears later in uF

than in uIS , the resting level in uAMEM is increased in order
to start the movement earlier in subsequent trials. Conversely,
when the activity appears in uF earlier than in uIS , the
resting level in uAMEM is reduced to delay movement onset.
During execution, the working memory of a realized ac-
tion/event effect is stored in the Past Events field (uPE).
Inhibitory connections to uIS , uACT and uF guarantee
that existing bumps at corresponding field sites become
suppressed. Once the activity is below threshold, the next
action onset can be planned in uACT .

III. MODEL EQUATIONS

As stated earlier, the model is based on the theoretical
framework of Dynamic Neural Fields, that was originally
proposed by Wilson and Cowan (1973) and Amari (1977) to
explain pattern formation in a neural tissue [2], [23].
The population dynamics in each field is governed by a
integro-differential equation, which describes the activation
of a single layer of interconnected neurons along a one-
dimensional domain:

τ u̇(x, t) = −u(x, t)+S(x, t)+
∫
w(x−y)f(u(y, t))dy−h(t),

(1)
where u(x, t) represents the activity at time t of a neuron
encoding feature value x, τ defines the time scale of the field
dynamics, S(x, t) represents the time dependent localized
input at site x from vision system and/or connected fields,
h(t) is the resting level to which the field activity converges
without external stimuli, the coupling function w(x − y)
determines the strength of connectivity between neurons and
f(u) gives the firing rate function.
To implement a working memory function, the field dynamics
must be in a bi-stable regime, that is, a stable homogeneous
resting state representing the absence of information coexists
with localized activation bumps representing specific value
of the dimension represented by the field. In this regime,
localized transient input of sufficient strength destabilize
the resting state and drives the evolution of bump states
whereas transient inhibitory input may be used to implement
a ”forgetting” mechanism. A continuous decrease of the
global inhibitory input h will systematically reduce the gap
to the threshold for a bump formation of populations that
get only subthreshold excitation from connected neuronal
pools. Eventually, the excitation will be sufficiently strong
to trigger a suprathreshold response. The interested reader
may consult [2], [8] for a rigorous mathematical analysis of
the memory function provided by the field dynamics in the
bi-stable regime.
In his original work, Amari [2] analysed coupling function
of lateral-inhibition type that does not support stable multi-
bump solutions necessary to implement a memory functions
for sequences. Laing et al. (2002) proposed a coupling
function with oscillatory rather than monotonic decay and
have shown that multiple regions of suprathreshold activity
can persist simultaneously in a field. For the memory fields



uMEM , uPA, uPE and uAMEM we adapt the connection
function used in [14]:

w(x) = A−b|x|(bsin|αx|+ cos(αx)), (2)

where the parameter b > 0 controls the rate at which the
oscillations in w decay with distance. The parameters A and
α are added to control the amplitude and the zero crossings
of w.
In the remaining fields, uPER, uIS , uACT and uF , we apply
a connection function of lateral inhibition type to guarantee
the existence and stability of a 1-bump solution:

w(x− y) = wexce
(
(x−y)2

2σ2exc
)
− winhib, (3)

where wexc > 0 and σexc > 0 define, respectively, the
amplitude and standard deviation, and winhib > 0 represents
a constant lateral inhibition.
The strength of individual actions representations in uMEM
is controlled by a state-dependent dynamics for the baseline
activity hMEM (x, t) [5]:

ḣMEM (x, t) =(1− f(uMEM (x, t)))(−hMEM (x, t) + hMEM0)

+
1

τhMEM
f(uMEM (x, t)),

(4)

where f is the Heaviside step function, hMEM0
< 0 defines

the level to which hMEM converges without suprathreshold
activity at position x and τhMEM > 0 measures the growth
rate when it is present.
To retrieve the activation gradient from the memory, we
apply a simple linear dynamics for the baseline activity of
the uIS field:

τhIS ḣIS(t) = 1, hIS(t0) = hIS0
< 0. (5)

Changing the value of τhIS allows for recalling the sequence
with different speeds, while preserving the relative timing
of events. However, to ensure that the sequence of events is
executed with the same speed in uIS and uACT , time scale
parameters must have the same value in both fields.
The adaptation of activation gradient in uAMEM is per-
formed using the following h-dynamics:

ḣAMEM (x, t) =β(1− f(uIS(x, t))f(uF (x, t)))
(f(uF (x, t))− f(uIS(x, t))),

(6)

where f is again the Heaviside step function and β is the
adaptation rate parameter.

IV. RESULTS

We report results of a model simulation that shall illustrate
the basic functioning of the learning and adaptation of the
joint representation of order and relative timing of perceptual-
motor sequences. Fig. 3 shows a snapshot at time t = 700
of the first execution trial of a perceptual sequence memory
of 6 elements.
As can be seen in the figure, the subpopulation representing

the fourth sequence element is above threshold in uIS and
uACT , which means that at that moment the specific action
is being executed. Neural populations in uIS and uACT

Fig. 3. Snapshot of field activities of a model simulation at time t = 700.

appear to be preshaped by the tonic input from the memory
field uMEM , as can be seen by subthreshold activations of
component actions that have not been executed yet. The
activation peak in uF is just about to reach the threshold since
the processing of feedback is delayed with respect to the ex-
pected timing represented in uACT . Once the subpopulation
in uF becomes active, neurons in uF drive through excitatory
connections the evolution of a suprathreshold activity peak
in the connected population in uPE . Mediated by inhibitory
connections, the existence of the peak in uPE automatically
suppresses the suprathreshold activity in the corresponding
populations in uIS , uF and uACT . This negative feedback
can be clearly seen at the field locations of the three action
representations that have been already executed.
Details of the activity gradient adaptation in uAMEM are
discussed next.

A. Effect of a global adaptation of the resting level in
uAMEM

At the beginning of the first execution trial, the activity
gradients in uMEM and in uAMEM are equal. Assuming
equal time scales for the h-adaptation in uIS and uACT , the
simulated timing of the expected action effect matches the
executed onset of the first movement. Obviously, the sensory
feedback about the execution of the first action appears to
be significantly delayed and consequently also the execution
of the whole sequence. To change sequence onset to earlier
times, a global h-level adaptation has been used, as shown
in Fig. 4. This increases the gradient as a whole without
affecting the relative timing encoded in the relative strengths
of population representations of successive actions (top). The
resulting stronger preshaping in uACT reduces in subsequent
learning trials the movement onset for all component actions



Fig. 4. Global adaptation of resting level in uAMEM . Top panel of the
figure presents comparison of Perceptual Sequence Memory uMEM (solid
line) and Action Onset Memory uAMEM (dotted line). Bottom panel shows
the time course of activity in uIS and uF before (left) and after (right) the
global h-level adaptation.

by a constant amount of time (bottom).
The change in the resting level is governed by equation (6),
with an adaptation parameter β which decreases over learning
iterations i:

β = λ1e
−i + λ2, (7)

where λ1 and λ2 are constant.
This increases the efficiency of the adaptation process

since the temporal difference between the time course of
suprathreshold activations in uIS and uF can be initially
quite big, allowing a larger adaptation of the resting state
per iteration. Smaller values of β on the other hand guarantee
fine adjustment when the expected timing of events and the
time of sensory feedback are already relatively close.
For the case of constant delays for all component actions,
like for the keystrokes in the piano task [11], this global h-
adaptation is sufficient to perfectly synchronize movement
onset with external events (e.g., a metronome). However,
assuming different movement times for individual events, we
still need a mechanism to adjust the amplitudes of particular
peaks of activation in uAMEM . This can be seen when
comparing the time courses of the populations representing
actions 2 and 3 in Fig. 4 (bottom) which are still delayed.

B. Effect of a local adaptation of the resting level in uAMEM

To fine tune the timing of each particular event represented
in the initial perceptual memory, we used a local h-adaptation
in accordance with equation 6. In the example shown in

Fig. 5. Result of local adaptation of resting level in uAMEM . Left
panel: Perceptual Sequence Memory uMEM (solid line) and Action Onset
Memory uAMEM (dotted line) are compared. Right panel: To make
changes in the peak amplitudes better visible, the amplitudes have been
multiplied by a constant factor.

Fig. 5, all action onsets except the first one are delayed by
varying amounts of time. The local adaptation mechanism
has the objective to minimize the difference in the onset of
suprathreshold activity of corresponding local populations in
uIS and uACT . The resulting increase in peak amplitudes in
uAMEM compared to uMEM indicates that movement onset
times appear to be reduced. To verify that the novel motor
memory indeed represents the correct timing of events, Fig.
6 compares for two action representations the time courses
before and after the adaptation process. The bottom panel
shows that the earlier movement onsets produce the action
effects at the time predicted by the internal simulation.
Since the success of the local adaptation process does not

depend on the magnitude of the initial temporal mismatch, it
becomes clear that a global h-adaptation is not a necessary
first step. The adjustment of the timing could be achieved by
the local process alone. However, performing the global adap-
tation first significantly accelerates the adaptation process,
reducing the number of execution-adaptation trials needed to
achieve a satisfactory result. The speed of convergence of the
process depends of course also on the choice of the adaptation
rate parameter (β). As can be seen in the Fig. 7, larger values
of β lead as expected to a faster convergence. However,
increasing β beyond a certain limit may introduce instabilities
in the adaptation process. With larger changes in the memory
strengths in each iteration, the temporal differences between
the onset of suprathreshold activity in uIS and uF start to
oscillate between positive and negative values.

V. DISCUSSION

In this paper, we have used the neuro-plausible modeling
framework of dynamic fields to address the problem of
temporal and ordinal learning of perceptual-motor sequences.
The simulation results demonstrate how feedback about ex-
ecuted actions might be used by the cognitive system to
fine tune a joint memory representation of the ordinal and
the temporal structure which has been initially acquired by
observational learning. The fluent succession of acts in our
performance of highly-trained, sequential behaviors is gen-
erally believed to support the notion of joint representations
[12], [17]. However, the need to rapidly adapt the movement



Fig. 6. Effect of a resting level adaptation in uAMEM on the timing of
events. The top panel of the figure presents the time course of population
activity representing two successive sequence elements in uIS (left) and uF
(right) after the first execution of the sequence. The middle panel shows the
time course of activity in uACT before (left) and after (right) the local h-
level adaptation. The bottom part of the figure presents the time course
of activity in uIS (left) and uF (right) after the adaptation process in
uAMEM .

Fig. 7. The change in the delay between the onset of suprathreshold activity
in uIS and uF with increasing numbers of iterations is plotted for β =
0.0005 (left) and β = 0.002 (right).

rates to changing environmental constraints has been used as
argument against a fully integrated view [21]. The model
architecture solves this problem by assuming that a joint
memory representation is integrated in the action onset layer
with a separate action onset mechanism which preserves the
relative inter-response times encoded in the memory.
Conceptually, the model belongs to a class of theoretical
approaches known as competitive cuing (CQ) models that
have been widely used in the past to explain data from human
sequence learning ([13], for review and discussion see [18]).

The parallel planning of all sequence elements is one of
the essential features that distinguishes CQ-model from the
fundamentally serial mechanism implemented in also very
popular recurrent neural network models of serial organiza-
tion (e.g., [6], [7]). The DNF model extends the CQ-principle
of storing serial order in an activation gradient to include also
temporal information. The action onset mechanism used to
recover the stored action timing is consistent with neuro-
plausible models of decision making. These models assume
that a decision signal rises in response to information about
the task at hand until a fixed decision threshold is reached
(e.g., [20]). In the action onset layer, neural population
activity rises linearly from a pre-activated state due to the
release of global inhibition. The recent concept of proactive
inhibitory control that has been discussed in relation to
movement preparation and reaction time is in line with
the implemented task-dependent adjustment of the baseline
activity of neural populations [22]. It is important to notice
that the simple linear dynamics implemented in the model
is not a prerequisite, other growth models could have been
used as well as long as the growth rate matches the growth
rate of the dynamics controlling the strength of the memory
representations.
While the presented modeling work takes inspiration from
neurophysiological and behavioral findings, it is also con-
strained by the specific needs of robotics applications. Our
long-time goal is to develop autonomous robots able collab-
orate with humans in a natural that is human-like manner
[9]. We have tested in the past a complex cognitive control
architecture consisting of several coupled DNFs in a task
in which the robot ARoS collaborates with different users in
assembling a toy object from its parts [3]. As shown in many
real world robotics applications [8], the processing principle
of recurrent excitatory feedback from neighboring neurons
has been proven efficient in amplifying noisy and often weak
sensory signals. Moreover, the self-stabilizing properties of
the field dynamics can be exploited to implement a robust
decision making capacity in ambiguous and noisy environ-
ments. In the present study, we have used the formation of
stable bumps to test an activation-based learning mechanism
that supports the rapid acquisition of sequential knowledge
by observation. Observational learning is considered highly
attractive for robotics in general since it may significantly
speed up skill acquisition compared to individual discovery
in potentially dangerous trial-and-error learning [4]. Since
many demonstration would annoy the teacher, the learning
should be fast and efficient. In the observational learning
study mentioned in the introduction, ARoS was able to
correct initial memory errors in sequencing and timing of a
musical sequence consisting of 12 sensory events in only 4-5
demonstration-execution cycles. Due to noise in the encoding
and the recall phase, the effective timing could vary from
trial to trial but still in a range that preserved a recognizable
melody.
The modeling results show that the perceptual memory of
observed sequential information may be used by the cognitive
system as a bias to efficiently develop an effector-specific



motor memory of serial performance. The adaptation rule
implements a comparison between the dynamic states of neu-
ronal populations in different model layers representing the
expected and realized timing of behavior. The mechanisms
is similar to the action monitoring function implemented in
our DNF architecture for human-robot interactions [3].
The focus of the present theoretical work on the important
temporal dimension of sequential behavior does not mean
that all aspects of the order problem have been already
solved. For instance, the order of component actions may
not be fixed but may vary depending on the task context.
Extracting common principles from multiple examples is
the hallmark of recurrent neural network models [6], [7].
From the robotics point of view, it would be interesting to
combine the advantage of a fast activation-based learning by
observation with a slower weight-based learning to extract
such generalized task knowledge [16].
Directly testing in the piano task the feedback learning
extension of the original DNF model was not possible due to
limitations in the precision of the arm and hand control. We
are currently exploring the learning of goal-directed action
sequences such as reaching-grasping-transporting-placing an
object that can be segmented in a series of contact events.
Compared to the musical example, a much reduced temporal
precision is needed (in the range of several seconds not
milliseconds) to produce useful results. Learning and flexible
adapting the timing of these sequences will greatly improve
the smoothness and skillfulness of human-robot interactions.
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