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Abstract
The ability of neural systems to turn transient inputs into persistent changes in activity is thought to be a fundamental
requirement for higher cognitive functions. In continuous attractor networks frequently used to model working memory or
decision making tasks, the persistent activity settles to a stable pattern with the stereotyped shape of a “bump” independent of
integration time or input strength. Here, we investigate a new bump attractor model in which the bump width and amplitude
not only reflect qualitative and quantitative characteristics of a preceding input but also the continuous integration of evidence
over longer timescales. The model is formalized by two coupled dynamic field equations of Amari-type which combine
recurrent interactions mediated by a Mexican-hat connectivity with local feedback mechanisms that balance excitation and
inhibition. We analyze the existence, stability and bifurcation structure of single and multi-bump solutions and discuss the
relevance of their input dependence to modeling cognitive functions. We then systematically compare the pattern formation
process of the two-field model with the classical Amari model. The results reveal that the balanced local feedback mechanisms
facilitate the encoding and maintenance of multi-item memories. The existence of stable subthreshold bumps suggests that
different to the Amari model, the suppression effect of neighboring bumps in the range of lateral competition may not lead
to a complete loss of information. Moreover, bumps with larger amplitude are less vulnerable to noise-induced drifts and
distance-dependent interaction effects resulting in more faithful memory representations over time.

Keywords dynamic neural field · conservation law · localized states · stability · input integration

Communicated by Benjamin Lindner.

B Weronika Wojtak
w.wojtak@dei.uminho.pt

Stephen Coombes
stephen.coombes@nottingham.ac.uk

Daniele Avitabile
d.avitabile@vu.nl

Estela Bicho
estela.bicho@dei.uminho.pt

Wolfram Erlhagen
wolfram.erlhagen@math.uminho.pt

1 Research Centre of Mathematics, University of Minho,
Guimarães, Portugal

2 Research Centre Algoritmi, University of Minho, Guimarães,
Portugal

3 Centre for Mathematical Medicine and Biology, School of
Mathematical Sciences, University of Nottingham,
Nottingham, UK

4 Department of Mathematics, Vrije Universiteit, Amsterdam,
The Netherlands

1 Introduction

The ability of the brain to accumulate, combine and maintain
information over behaviorally relevant time scales is funda-
mental for a wide variety of cognitive functions that bridge
perception and action (Miller and Cohen 2001). This has
been associated with persistent neural activity observed in
many brain regions in working memory, decision making
or planning tasks (Curtis and Lee 2010). The longstanding
hypothesis that reverberations in recurrent neural networks
can give rise to sustained activity throughout periods without
external stimulation (Hebb 1949) has motivated an impres-
sive amount of experimental and computational modeling
work (for reviews see Wang 2003; Zylberberg and Strow-
bridge 2017). A particularly insightful theoretical framework
has been the continuous bump attractor network (Amari
1977; Brody et al. 2003b; Compte et al. 2000) which
has been widely used in the past to explain data from
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behavioral experiments and to synthesize cognitive behav-
ior in robotics systems (Erlhagen and Bicho 2006; Schöner
2016). It explains the emergence of stable representations
of continuous-valued information, such as for example the
direction of heading during navigation or the position of
an object in space, by assuming a distance-dependent neu-
ronal connectivity pattern in feature space. Typically, neurons
tuned to similar values of a continuous variable excite each
other, and those tuned to dissimilar values inhibit each other.
When the neurons are ordered along a line by their selec-
tivity, the self-stabilized activity pattern, which the intrinsic
network dynamics develops in response to a transient input,
is visualized as a spatially localized activity bump. Due to the
assumed translation-invariant connection structure, the net-
work can hold a continuous family of bumps, with each of the
attractor states representing the memory of a specific input
value. Continuous attractor networks provide some degree
of robustness to perturbations away from the attractor man-
ifold since perturbed network activity quickly decays back
to the bump state. However, since bumps are neutrally sta-
ble, their position can be easily shifted along the manifold
by weak external inputs (Amari 1977). This property can be
exploited for instance to explain the capacity of a neural sys-
tem to track the position of a moving object in real time (Wu
et al. 2008), and for a robotics application (see also Bicho
et al. 2000). Direct experimental evidence for a continuous
bump attractor hypothesis comes from visuo-spatial working
memory (WM) tasks in which a subject has to maintain the
information about the spatial position of one or more objects
over a short period of time. After the cessation of the tuned
external input, the bump position is vulnerable to random
activity fluctuations which may cause a drift of the bump over
time (Camperi and Wang 1998; Kilpatrick and Ermentrout
2013). This model-derived predictive relationship between
persistent neural population activity and the variability of
spatial memory over time has been reported recently in a
combined electrophysiological and behavioral task (Wim-
mer et al. 2014). Consistent with the neural dynamics in
continuous attractor models of multi-item memory (Amari
1980; Ferreira et al. 2016; Krishnan et al. 2018), several
behavioral experiments report distance-dependent interac-
tion effects between memory traces which may be described
as an attractive or repulsive bias of memorized nearby items
(Almeida et al. 2015; Johnson et al. 2009, for a discussion
of the neural underpinning of attraction versus repulsion see
also Erlhagen et al. 1999).
Despite their success in many applications, the explanatory
power of classical continuous attractor models remains still
limited since the memory bump has a stereotyped shape
exclusively determined by the recurrent interactions within
the network. A more sophisticated circuit-based model
should regulate also the shape and rate of localized persis-
tent activity depending on the qualitative and quantitative

characteristics of the preceding inputs. It has been shown for
instance that the level of persistent activity during the delay
period of a spatial WM task correlates with stimulus contrast
(Constantinidis et al. 2001) and can be modulated by addi-
tional spatially informative cues (Kuo et al. 2012; Wildegger
et al. 2016). Importantly, the discharge rate of neural popu-
lations is predictive of the psychophysical task performance.
The notion of a static bump as a neural correlate of WM is
also inconsistent with recent evidence showing that persistent
input-selective activity often changes systematically during
the course of the delay period (e.g., ramping-type activity
(Brody et al. 2003b)). One hypothesis is that the variability
in activity is due to the continuous integration of other task
relevant information such as for instance the time elapsed
since stimulus presentation (Brody et al. 2003a). The capac-
ity of neural circuits to rapidly change firing rates in response
to transient inputs while maintaining firing at a constant level
for extended periods of time is fundamental for decision mak-
ing processes (Curtis and Lee 2010; Sakai et al. 2006). This
requires the accumulation and storage of evidence for com-
peting options across time. Neural recordings from animals
suggest that the level of activity of neural populations rep-
resenting a certain option correlates with choice certainty
(Kiani and Shadlen 2009). The observation that persistent
activity related to the outcome of previous choices often con-
tinues during inter-trial intervals shows that the integration
time can be quite long (Histed et al. 2009).
Here, we analyze a new bump attractor model (Wojtak et al.
2016) based on the theoretical framework of dynamic neu-
ral fields that is able to hold in addition to a continuum of
bump positions also a continuum of bump amplitudes. The
construction of recurrent networks that can transform brief
inputs into sustained firing rates at different levels has been
proven to be a nontrivial problem (Koulakov et al. 2002;
Sakai et al. 2006). Previous work was based on the assump-
tion of networks with linear input-output functions or, when
more realistic nonlinear neurons were used, heavily relied
on numerical fine tuning of network parameters (Brody et al.
2003b; Seung 1998). A balanced relation of excitation and
inhibition in the network must be kept so that the sustained
activity at any time represents the time integral of past inputs.
A recent dynamic field model addresses the existence of
bumps with varying amplitudes in a lateral inhibition net-
work with separate excitatory and inhibitory populations and
a piecewise linear firing rate function (Carroll et al. 2014). To
support a range of possible bump amplitudes, the recurrent
excitation must be precisely chosen to be inversely pro-
portional to the gain of the transfer function. To mitigate
this fine tuning problem, additional mechanisms such as the
use of bistable neurons with different activation thresholds
have been proposed (Koulakov et al. 2002), for review of
different computational approaches see (Sakai et al. 2006).
Due to the bistability, the integrator network exhibits multi-
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ple stable states even with imprecisely tuned feedback. The
inherent trade-off is a loss of sensitivity to weaker input since
a minimum input strength is necessary to transition between
adjacent states.
Our proposed model does not rely on a domain of linear
input-output transfer and supports in principle a continuous
integration of inputs of any strength and duration. It consists
of two coupled dynamic fields of Amari type (Amari 1977).
The field receiving external input has a classical Mexican-hat
coupling with excitation dominating at short distances and
surround inhibition. The second field integrates the activity
from the first field with an inverted Mexican-hat connec-
tivity and feeds its activity back locally. We first analyze
the existence, stability and bifurcation structure of bumps
with input-dependent shapes and discuss their relevance to
modeling cognitive functions such as working memory and
decision making. We then systematically compare the pat-
tern formation process in the Amari and the two-field model
in tasks with multiple localized inputs. Specifically, we are
interested in evaluating how the local feedback mechanisms
of the two-field model affect the interaction of nearby bumps
and the robustness of memory maintenance in the presence
of random activity fluctuations.

2 Definition of the two-fieldmodel

We study a system of two coupled neural field equations
defined on a one-dimensional finite domain Ω : [−L, L]:

∂u(x, t)

∂t
= − u(x, t) + v(x, t) + I (x, t)

+
∫

Ω

w(|x − y|) f (u(y, t) − θ)dy,

(1a)

τv

∂v(x, t)

∂t
= − v(x, t) + u(x, t)

−
∫

Ω

w(|x − y|) f (u(y, t) − θ)dy.

(1b)

Here the variables u(x, t) and v(x, t) represent the activity
(e.g., membrane potential) of a neuron at the spatial location
x at time t in two coupled populations, labeled u and v,
respectively. The firing rate function f (x) is chosen as a
Heaviside function with threshold θ such that f (x) = 1
for x ≥ 0 and f (x) = 0 otherwise. The weight function
w(|x − y|) representing the synaptic connectivity between
neurons at locations x and y has a Mexican-hat shape given
by the difference of two Gaussian functions:

w(x) = Aex e
(−x2/2σ 2

ex
)
− Aine

(−x2/2σ 2
in

)
− winh, (2)

with Aex > Ain > 0 and σin > σex > 0. The parameter
winh > 0 guarantees that spatially uniform inhibition exists
at larger distances, |x | > xc.
The time-dependent external input I (x, t) to the u-population
is modeled as one or more Gaussians centered at positions
xc j :

I (x, t) = (Ht0(t) − Hte(t))
n∑

j=1

AI j e

(
−(x−xc j )

2/2σ 2
I j

)
, (3)

where Ht0(t) represents the Heaviside step function with
threshold t0 ≥ 0 controlling the start and the end of the input
at times t0 and te, respectively. In the following we use for
the input duration the notation dI = te − t0. Input strength is
controlled by AI j > 0.
The u-equation of system (1) without the term v(x, t) rep-
resents the field model originally introduced and analyzed
by Amari (1977). He considers two separate inhibitory and
excitatory subpopulations and derives the single population
model with Mexican-hat connectivity by assuming that the
wider ranging inhibitory feedback in the network is infinitely
fast. This ensures that the spread of self-sustained exci-
tation remains localized in a region activated by external
input. Findings in neurophysiological and modeling stud-
ies of the cortical microcircuit of spatial WM stress the
important role of local inhibitory feedback for generating
persistent activity (Constantinidis and Wang 2004). A dis-
tinct subclass of interneurons has been described which
integrates inputs from nearby excitatory cells and exhibits
sustained responses with similar tuning properties during
delay periods. As part of a feedback loop, these neurons
might implement a tight balance of excitatory and inhibitory
inputs to a target cell. Biologically plausible circuit mod-
els of WM have also addressed how cortical disinhibition
of interneurons (e.g., by interneurons targeting interneurons)
with different spatial tuning affect WM maintenance (Murray
et al. 2014). The mechanistic two-field model implements a
balanced local inhibitory feedback and a disinhibition of lat-
eral inhibitory feedback by assuming that the v-population
integrates the activity of the u-population with an inverted
Mexican-hat connectivity. Note that a spatial integration with
a Mexican-hat profile could be applied as well when −v(x, t)
instead of +v(x, t) is used in the u-equation. To understand
the role of the v-population in the pattern formation process,
it is instructive to follow Amari’s strategy and also consider
different time scales for the two populations. In the limiting
case τv → 0, the v-population is at quasi-equilibrium with

v(x, t) = u(x, t) −
∫

Ω

w(|x − y|) f (u(y, t) − θ)dy. (4)
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Substituting this expression into the u-equation of (1) yields

∂u(x, t)

∂t
= I (x, t). (5)

The u-population thus implements a robust temporal inte-
gration of external inputs if fast inhibitory feedback loops
counterbalance any input-induced changes in the recurrent
interactions (Denève and Machens 2016; Lim and Goldman
2013). For the integration to be perfect, we have to assume
a linear response function of the v-population, f (v) = v.
The presence of nonlinearities in the neural dynamics such
as saturation will make the integrator circuit insensitive to
additional input when the saturation limit of the response
function f (v) is reached (Lim and Goldman 2013). Notably,
the integrator capacity does not depend on the precise choice
of the connectivity function w(x) or the nonlinearity f (u).
In the rest of the paper, we analyze and apply model (1)
with identical timescales for the u-population and the v-
population (τv = 1). This allows us to directly compare
the behavior of the two-field and the Amari models.

2.1 Existence and stability of one-bump solutions

2.1.1 Linear stability analysis à la Amari

In the following we study the existence and stability of single
bump steady state solutions of the model (1) in the case of a
Heaviside firing rate function and initial condition u(x, 0)+
v(x, 0) = K , where K > 0 is a constant.
Let R[u(x, t)] be the region over which the field is excited

R[u(x, t) > θ ] = (x1(t), x2(t)) (6)

and let the gradients of u(x, t) at the boundaries x1 and x2 of
the excited region be

c1 = ∂u(x1, t)

∂x
, −c2 = ∂u(x2, t)

∂x
. (7)

After a short period of time dt the excited region changes to

R[u(x, t + dt)] = (x1(t + dt), x2(t + dt)). (8)

The boundaries of the excited region satisfy

at time t : u(xi , t) = θ, (9a)

at time t + dt : u(xi + dxi , t + dt) = θ, (9b)

where xi (t + dt) = xi + dxi , i = 1, 2.
A Taylor expansion of the latter equation yields

∂u(xi , t)

∂x
dxi + ∂u(xi , t)

∂t
dt = 0, i = 1, 2, (10)

Fig. 1 a The plot of F(Δ) given by (16) with K = 1. For θ = 0.2,
there is one (stable) solution with Δ = 4.14. For θ = 0.9, there are
two solutions: unstable solution with Δ = 0.67 and stable solution with
Δ = 2.65. b The plot of E(Δ) given by (20). For θ = 0.2, there is a
local minimum with Δ = 4.14. For θ = 0.9, there is a local maximum
with Δ = 0.67 and a local minimum with Δ = 2.65. The kernel w

is given by (2) with Aex = 3, σex = 1.4, Ainh = 1.5, σinh = 3 and
winh = 0.2

for infinitesimally small dxi and dt .
We can then rewrite (1) at x = xi (t) as

∂u(x, t)

∂t
= −u(x, t) + v(x, t) +

∫ x2(t)

x1(t)
w(|x − y|)dy,

(11a)

∂v(x, t)

∂t
= −v(x, t) + u(x, t) −

∫ x2(t)

x1(t)
w(|x − y|)dy.

(11b)

Let

W (x) =
∫ x

0
w(y)dy. (12)

Since u(xi , t) = θ , we have from (11a)

∂u(xi , t)

∂t
= −2θ + K + W (x2 − x1). (13)
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We have

dx1

dt
= −∂u/∂t

∂u/∂x

∣∣∣∣
x=x1

= − 1

c1
(−2θ + K + W (x2 − x1)) ,

(14a)
dx2

dt
= ∂u/∂t

∂u/∂x

∣∣∣∣
x=x2

= 1

c2
(−2θ + K + W (x2 − x1)) .

(14b)

We can then describe the change of length of the excited
region Δ(t) = x2(t) − x1(t)

dΔ

dt
=

(
1

c1
+ 1

c2

)
(−2θ + K + W (Δ)) . (15)

The existence of solution of width Δ = x2−x1 is determined
by the roots of

F(Δ) = −2θ + K + W (Δ) = 0. (16)

The stability condition is that a steady state of width Δ is
stable if

dF(Δ)

dΔ
< 0, (17)

and unstable otherwise. We plot examples of function F(Δ)

for different values of threshold θ in Fig. 1a.

2.1.2 Lyapunovmethod

The stability of bump solutions can be also analyzed by
searching for local minima and local maxima of a Lyapunov
functional associated with system (1) (French 2004; Kubota
and Aihara 2005; Owen et al. 2007). For the two-field model
with Heaviside firing rate function, the functional is given by

E[u] = − 1

2

∫
Ω

∫
Ω

w(|x − y|) f (u(x, t) − θ)

× f (u(y, t) − θ)dxdy

+ (2θ − K )

∫
Ω

f (u(x, t) − θ)dx .

(18)

For a bump of width Δ = (x2 − x1) we have

E(Δ) = − 1

2

∫ x2

x1

∫ x2

x1

w(|x − y|)dxdy

+ (2θ − K ) (x2 − x1).

(19)

Using (12) we obtain

E(Δ) = −
∫ Δ

0
W (x)dx + (2θ − K )Δ. (20)

Figure 1b shows plots of E(Δ) for the example used in Fig.
1a. As indicated by the vertical lines, the local minima cor-
respond to stable and the local maxima to unstable bumps.

3 Steady states of themodel in the absence
of input

3.1 Bumps with initial condition
u(x, 0) + v(x, 0) = K

We start the numerical investigation of one-bump solutions
of the two-field model using the symmetric initial condition

u(x, 0) = Aue
(−x2/2σ 2

u
)
, v(x, 0) = K − u(x, 0), (21)

where Au > 0, σu > 0 and K ≥ 0. Stable bumps are found
by numerically integrating (1) to a steady state. Following
the numerical analysis of the Amari model (Amari 1980), we
expect convergence if the width of the initial profile above
threshold exceeds the width Δ1 of the unstable pattern in Fig.
1. To find the unstable bump associated with a narrower initial
profile, we apply numerical bifurcation techniques described
in (Rankin et al. 2014). These techniques also allow us to
track steady states of (1) when model parameters are var-
ied. The bifurcation curve in Fig. 2a with the threshold θ as
continuation parameter shows that for K < 2θ branches of
stable (solid line) and unstable (dashed line) bumps coexist.
For K ≥ 2θ , the unique steady state is a stable bump. The
panels on the right show particular solutions as indicated by
the points P1, P2 and P3 on the bifurcation curve. Here and in
all following figures, solid and dashed black lines represent
u(x) and v(x), respectively. Like for the Amari model, the
shape of the bump attractor does not depend on the shape of
the initial profile (compare panels (d) and (e)). Note that for
a subthreshold initial profile, Au < θ , the activity converges
to the homogeneous solution (u, v) = (K/2, K/2).

3.2 Bumps with initial condition
u(x, 0) + v(x, 0) = K(x)

To work as a neural integrator, the bump shape of the two-
field model (1) should depend on the initial conditions for the
u-population and the v-population since they may be set by
external input. Figure 3 shows examples of bump solutions
for the initial conditions

u(x, 0) = K (x), v(x, 0) = 0, K (x) = AK e
(−x2/2σ 2

K

)
,

(22)

which represent a homogeneous initial state for the v-
population and a spatially structured state for the u-population.
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Fig. 2 a Bifurcation curve showing one-bump solutions of (1) with
a Mexican-hat kernel (2) as the threshold parameter θ is varied. Solid
(dashed) lines represent stable (unstable) solutions. umax is the max-
imum of u over all x . (b-e) Examples of solutions at the points P1
(unstable) and P2 (stable) for θ = 0.8 (dotted line) and P3 (stable) for
θ = 0.4 (dotted line) are shown. Solid and dashed black lines represent
u(x) and v(x), respectively. For the solution at the point P3 we show

examples of different initial conditions, with solid (dashed) grey lines
representing initial profiles u(x, 0) (v(x, 0)). They are given by (21)
with Au = 0.75, σu = 1, K = 1 (d) and Au = 1.5, σu = 4, K = 1
(e). For the remaining solutions, the initial condition is given by (21)
with Au = 1 and σu = 1, K = 1. The kernel w is given by (2) with
Aex = 2, Ain = 1, σex = 1.25, σin = 2.5 and winh = 0.1

Fig. 3 One-bump solution of
the two-field model (1) (black
lines) for two different initial
profiles (22) (grey lines) with
AK = 1, σK = 1 (a) and
AK = 2, σK = 2 (b).
Parameters of the kernel as in
Fig. 2. Threshold θ = 0.5
(dotted line)

As can be clearly seen when comparing the activation pat-
terns in the two panels, the bump shape correlates perfectly
with the shape of the initial activation profile of the u-
population.
Figure 4 shows results of numerical continuation of bump
solutions of (1) with initial condition (22) and threshold θ as
a continuation parameter.

The bifurcation curves for the smaller (a) and the larger
(c) initial profiles are different but maintain the same qual-
itative features. Again we can see that in a certain range of
threshold values stable and unstable bumps coexist. However,
different to the case of the symmetric initial condition (21),
there is an additional branch of stable subthreshold bumps
given by u(x, t) = v(x, t) = K (x)/2. Panels (b) and (d)
show examples of the three types of bump solutions at the
points P1, P2 and P3 of the bifurcation curves. It can be seen
that a larger initial profile leads to larger bumps and shifts
their coexistence to higher threshold values. In the exam-
ple, the width and the amplitude of the initial profile were
manipulated affecting both the width and the amplitude of the
evolving pattern. It is important to notice that stable bumps

with a constant width and varying amplitude can be created
for instance with a truncated Gaussian profile which limits
the spatial range of the initial activation. We come back to this
point when discussing the continuous integration of localized
inputs of varying duration and strength in Sect. 4.

3.3 Multi-bump solutions

3.3.1 Numerical continuation of two-bump solutions

Different from the Amari model (Laing and Troy 2003),
the two-field model supports the existence of stable two-
bump solutions for which the inter-peak distance is within the
competitive range of the Mexican-hat connectivity. We use
numerical continuation to track two-bump solutions of (1) as
the threshold parameter θ varies. Figure 5 shows the result-
ing bifurcation curve with stable and unstable suprathreshold
branches and a subthreshold branch. Different to the situa-
tion for single bumps, the subthreshold solution (P1) does not
coexist with the suprathreshold two-bumps (P3 and P4). To
evaluate the dependence of the inter-peak distance on model
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Fig. 4 a and c Bifurcation curves showing one-bump solutions of (1)
with the initial condition (22) with AK = 1, σK = 1 (a) and AK = 2,
σK = 2 (c) as the parameter θ is varied. Solid (dashed) lines represent
stable (unstable) solutions. Examples of solutions at the points P1, P3

(stable) and P2 (unstable) for a narrower and a wider profile of K (x)

are shown in panels (b) and (d), respectively. Threshold θ = 0.7 (b)
and θ = 1.25 (d) (dotted line). Parameters of the kernel as in Fig. 2

parameters, Fig. 6 depicts the bifurcation curve when the lat-
eral inhibition parameter σinh is varied. As illustrated by the
two pairs of stable and unstable two-bumps, (P2, P3) and (P1,
P4), respectively, the distance decreases with increasing σinh .
The Amari model would predict for the same distances a pro-
nounced repulsive interaction of the two localized activation
patterns.

3.3.2 Existence and stability of N-bump solutions

It is well known that classical continuous attractor networks
have difficulties simultaneously stabilizing multiple bumps
due to the constraints imposed by lateral inhibition and the
interference between nearby patterns (Amari 1977; Wei et al.
2012). This limitation has been addressed in computational
studies by introducing additional processing mechanism such
as short-term synaptic facilitation (Rolls et al. 2013) or by
using interaction kernels that are not of lateral-inhibition type
(Ferreira et al. 2016; Laing and Troy 2003). However, already
Amari (1980) pointed out that for the connectivity function
(2) multiple stable bumps may exist at distances, |x | > xc,
where the lateral inhibition is spatially uniform (for multi-
item WM applications see e.g. Johnson et al. 2009; Wei et al.
2012).

It is straightforward to derive a condition for the exis-
tence of an N -bump which is constrained by the summed
inhibition that each bump receives from the N − 1 neigh-
boring patterns. The bump width depends on N but should
be equal for each bump. For the numerical realization
in a finite integration domain, one has to apply circular
boundary conditions or open boundary conditions with a
sufficiently wide lateral inhibition kernel. Without loss of
generality, we assume that the bump is located in the interval
[−Δ/2, Δ/2] and that the remaining N − 1 pulses are located
in the intervals [x1 − Δ/2, x1 + Δ/2], [x2 − Δ/2, x2 + Δ/2],
…,

[
xN−1 − Δ/2, xN−1 + Δ/2

]
, with xi+1 − xi > Δ + xs ,

i = 1, 2, . . . , N −1. That is, u(x) > θ for x ∈ [−Δ/2, Δ/2]∪
[x1 − Δ/2, x1 + Δ/2] ∪ . . . ∪ [

xN−1 − Δ/2, xN−1 + Δ/2
]
, and

u(x) ≤ θ elsewhere.
Equilibrium solutions of the two-population model are given
by

U (x) =V (x) +
∫ Δ/2

−Δ/2

w(y)dy +
∫ x1+Δ/2

x1−Δ/2

w(y)dy

+ . . . +
∫ xN−1+Δ/2

xN−1−Δ/2

w(y)dy,

(23a)
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Fig. 5 Bifurcation curve showing two-bump solutions of (1) with the
initial condition (22) with AK = 1.5, σK = 1 as the parameter θ is var-
ied. Solid (dashed) lines represent stable (unstable) solutions. Examples

of two-bump solutions at the points P1, P3, P4 (stable) and P2 (unsta-
ble) are shown. Threshold θ (dotted line): θ = 1.9 (P1), θ = 0.82 (P2
and P3), θ = 0.4 (P4). Parameters of the kernel as in Fig. 2

Fig. 6 Bifurcation curve showing two-bump solutions of (1) with the
initial condition (22) with AK = 1.5, σK = 1 as the parameter σinh is
varied. Solid (dashed) lines represent stable (unstable) solutions. Exam-

ples of two-bump solutions at the points P1, P2 (stable) and P3, P4
(unstable) are shown. σinh = 3 (P2 and P3), σinh = 4 (P1 and P4).
Remaining parameters as in Fig. 2

V (x) =U (x) −
∫ Δ/2

−Δ/2

w(y)dy −
∫ x1+Δ/2

x1−Δ/2

w(y)dy

− . . . −
∫ xN−1+Δ/2

xN−1−Δ/2

w(y)dy.

(23b)

Since at the boundaries of a bump U (−Δ/2) = U (Δ/2) = θ ,
U (x) + V (x) = K and

∫ xi +Δ/2

xi −Δ/2

w(y)dy = −Δwinh, (24)

we get the existence condition for N -bump solutions

F(Δ) = −2θ + K + W (Δ) − (N − 1)Δ winh = 0. (25)

The width of an individual bump of an N -bump solution can
be thus found graphically by looking on the intersection of the
plot of W (Δ) with the line 2θ − K +(N −1)Δwinh . Figure 7
shows an example for the case K = 2θ and N = 2. The max-
imum number of stable bumps that the specific connection

Fig. 7 Existence of N one-bump solutions in the two-field model with
the Mexican-hat kernel (2). Threshold θ = 0.5 and K = 1. Straight
lines show the condition (25) for N = 2 and N = 6. Parameters of the
kernel as in Fig. 2

function supports is N = 6. A further increase of lateral inhi-
bition would destabilizes the bumps since dW (Δ)/dΔ > 0.
The analogous condition for the existence of an N -bump
solution in the Amari model is given by
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Fig. 8 Solutions at time t = 50
of the model (1) created with
transient inputs I (x, t) given by
(3) with variation of (b) input
strength AI , (c) input width σI
and (d) input duration dI .
Parameters of the inputs: (a)
AI1 = 1, σI1 = 1, dI = 1 (b)
AI1 = 3, σI1 = 1, dI = 1 (c)
AI1 = 1, σI1 = 6, dI = 1 (d)
AI1 = 1, σI1 = 1, dI = 3. The
kernel w is given by (2) with
Aex = 2, Ain = 1, σex = 1.25,
σin = 2.5 and winh = 0.1.
Threshold θ = 0.5 (dotted line),
K = 0

F(Δ) = −θ + W (Δ) − (N − 1)Δ winh = 0. (26)

For the example of Fig. 7, the maximum number of bumps
reduces in this case to N = 3. In the next section we show that
different to the Amari model with Mexican-hat connectivity,
the two-field model supports multi-bump solutions created
by inputs at any distance.

4 Input driven bump solutions

In working memory applications, classical bump attractor
models implement the encoding and maintenance of briefly
presented visual input as an all-or-none process. The infor-
mation is either stored in a self-stabilized bump with a shape
defined by the recurrent interactions or the information is
completely lost since neural activity decays back to resting
state. However, a growing body of experimental evidence
indicates that this binary classification may be insufficient
as a description of WM storage, because the representa-
tional quality of WM items may differ depending on sensory
attributes of the input or task demands. For instance, the
salience of the visual input manipulated through varying
stimulus strength (or contrast) is known to affect WM repre-
sentations. Consistent with the notion of memory-associated
persistent activity, a graded modulation of sustained popu-
lation activity as a function of stimulus contrast has been
described in a WM task (Constantinidis et al. 2001).

Figure 8 shows various bump solutions of the two-field
integrator model in which input attributes are systematically
varied. In panels (a) and (b), the attractor network converts
a transient input into a persistent output which is propor-

tional to the input amplitude. A comparison of panels (a) and
(c) illustrates that the bump also represents faithfully input
width. This property can be exploited for instance to encode
uncertainty in the sense of an explicit probability code (Ma
and Jazayeri 2014). Higher uncertainty is then represented by
a wider activation pattern across the neural population tuned
to a continuous input feature (e.g., representing ranges of
movement direction (Erlhagen and Schöner 2002)). In panel
(d), the localized input of panel (a) is applied but lasting
three times as long. The amplitude of the evolving bump
equals the bump amplitude in panel (b), as expected by per-
fect integration. The two-field model can thus be used to
model the encoding of input duration (Wojtak et al. 2019) if
one assumes that the input amplitude is first normalized by
upstream sensory processing (Carandini and Heeger 2012).

Figure 9 shows the temporal evolution of a bump in two
dynamic input scenarios which can be expected in any natural
environment. In the first example (a), the strength of evi-
dence continuously increases during the stimulation period.
The bump amplitude reflects again the total external input
applied to the population. The observed ramping-like activity
is a hallmark of “drift-diffusion” models of decision making
which assume the continuous accumulation of sensory and
other evidence to a threshold (for review see Bogacz 2007).
To investigate the dependence of the bump shape on input
width, a truncated Gaussian input (I (x, t) = 0, |x | > 1.5σ )
has been applied. As can be seen in panel (b), the bump width
reaches its maximum well before the end of the stimulation
period. For a read-out of the population activity by a down-
stream network this means that a gain in certainty about the
most likely parameter value as expressed in the bump ampli-
tude is not necessarily accompanied by more uncertainty
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Fig. 9 The temporal evolution
of the bump amplitude and the
bump width is shown for a
dynamic input with
continuously increasing strength
and constant width (a and b),
and for two sequentially
presented inputs with constant
amplitude and width (c and d).
A truncated Gaussian with
standard deviation σ = 1 and
I (x, t) = 0 for |x | > 1.5 σ is
applied: (a) AI1 = [1, 3],
dI = 1; (c) first input AI1 = 2,
dI = 1, second input AI1 = 1,
dI = 2. The kernel w is given
by (2) with Aex = 2, Ain = 1,
σex = 1.25, σin = 2.5 and
winh = 0.1. Threshold θ = 0.5
(dotted line), K = 0

Fig. 10 Solutions of the Amari model (a) and the two-field model (b)
at time t = 50 created with simultaneous inputs. Input I (x, t) with
AI1,2,3 = 1, σI1,2,3 = 1, dI = 1 is applied at time t = 1 at positions

xc1,2,3 ∈ {−18, 0, 18}. The kernel w is given by (2) with Aex = 2,
Ain = 1, σex = 1.25, σin = 2.5 and winh = 0.1. Threshold θ = 0.4
(dotted line), K = 0

about the range of possible parameter values as expressed
by a broadening of the activity distribution. To work as a
robust neural integrator over a longer timescale of a deci-
sion process, the network dynamics should hold the activity
level without significant decay or growth when an input sig-
nal vanishes. In the second example (c), the localized input is
applied sequentially with different strength at the same field
site x = 0. As can be seen in the time evolution plot, the
population activity stabilizes at a constant level after input
cessation at times t3 and t5, respectively. Panel (d) illustrates
that the bump width established during the first stimulation
period does not change when the second input is applied.
The existence of stable multi-bump solutions discussed in
Sect. 3 does not necessarily mean that their evolution can be
triggered by external inputs. In field models of lateral inhibi-
tion type, any existing suprathreshold activity will amplify
the competitive effect of the fast inhibitory feedback. This
means that in order to create an input-driven multi-bump,

no processing advantage should be given to a specific sub-
population in terms of the timing and the strength of the
input. For the two-field model, the competitive effect of lat-
eral inhibition is predicted to be counterbalanced to some
extent since the spatial integration of the v-population with
an inverted Mexican hat profile propagates excitation out-
wards from stimulated regions. Figure 10 shows that in both
models, three bumps evolve when three identical, transient
inputs are applied at the same time. The situation is different
for a sequential stimulation protocol (Fig. 11). In the Amari
case, only the first input triggers the evolution of a bump
whereas the locally balanced dynamics of the two-field model
stabilizes again three bumps. It is worth noting that suppres-
sion effects due to lateral inhibition can be also observed in
the two-field model. In the next section we show that when
inputs with different amplitudes are applied, the bump rep-
resentation of a weaker input may become suppressed below
threshold.
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Fig. 11 Solutions of the Amari model (a–d) and the two-field model (e–
h) created with sequential inputs. Inputs I (x, t) (gray lines) are applied
at times t1 = 1, t2 = 10 and t3 = 20 at positions xc1,2,3 ∈ {−18, 0, 18}.
Snapshots taken at times: t = 2 (a and e), t = 11 (b and f), t = 21 (c

and g), t = 50 (d and h). The parameters for all three sequential inputs
are AI1 = 1, σI1 = 1, dI = 1. Parameters of the kernel as in Fig. 10.
Threshold θ = 0.4 (dotted line), K = 0

4.1 Retro- cueing task

The representational quality of WM items is not only shaped
by bottom-up input features as discussed above but may
be also modulated by top-down signals representing task
demands (Wildegger et al. 2016). A behavioral paradigm
that has attracted considerable interest over the last decade is
retro- cueing (for an overview see Souza and Oberauer 2016).
It shows that memory performance can be enhanced by a cue
indicating the most relevant item for the current task goals,
even when the cue is applied long after the input array has
been removed. A simple application of prioritizing an item
during WM maintenance is a task in which the spatial loca-
tion of two equally task-relevant movement targets has to be
memorized, the information about the location to visit first
may vary and becomes available only later during the task.
The exact mechanisms underlying the retro-cueing benefit
are still debated but recent modeling and experimental work
suggests that top-down signals generate neural contrast by
enhancing the neural population representations of the cued
item and inhibiting activity of items irrelevant to current task
goals (Bays and Taylor 2018; Gazzaley and Nobre 2012).
As illustrated in Fig. 12, this view is consistent with the
dynamics of the integrator model when a second transient
input is applied to one of the two fields sites that had already
developed a bump in response to a first input. In the context
of the mentioned application, it is interesting to note that a
neural activation gradient is the hallmark of so-called com-
petitive cueing models of serial order (Rhodes et al. 2004).
In dynamic field implementations of this model class, a com-
petitive winner-take-all dynamics in a decision field, which
receives the memory gradient as input, is used to recall the
stored serial order (Ferreira et al. 2020).

Recent findings in functional magnetic resonance imag-
ing (fMRI) studies using a retro-cueing paradigm have
challenged the assumption that multiple items can be con-
currently represented in an active state of persistent neural
activity (Rose et al. 2016; Sprague et al. 2016). The find-
ings have been interpreted as evidence that only the currently
most task-relevant item is maintained in a persistent state
whereas the memories of currently unattended items are
stored in stimulus-selective patterns of short-term synap-
tic facilitation. Computational models show that such latent
“activity-silent” memory traces in the neural network can
be restored into an active state by retro-cues or other non-
specific read-out signals (Mongillo et al. 2008; Trübutschek
et al. 2017). However, the findings of the neurophysiological
experiments are not conclusive since the applied data anal-
ysis technique might not be sensitive enough to detect the
signatures of weak sustained neural activity associated with
unattended items (Masse et al. 2020, see Sutterer et al. 2019
for neural evidence of multiple active WM representations).
In fact, a recent modeling study based on the dynamic neural
field framework convincingly showed that all key experi-
mental findings of the fMRI retro-cue study (Sprague et al.
2016) could be reproduced relying entirely on sustained neu-
ral activity for WM representations (Schneegans and Bays
2017). The existence of subthreshold bumps in the two-field
model supports the notion that also weak population activity
can be sustained over behaviorally relevant timescales. Fig-
ures 13a and 13b show simulations of the same retro-cue task
as in Figure 12 but with weaker initial inputs and stronger
cue. The field develops again two bumps but with a closer to
threshold activation level. The main difference is that the pop-
ulation representation of the item without cue now appears
to be suppressed below threshold. Figure 13c shows that like
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Fig. 12 Retro- cueing task in the Amari model (a and c) and in the
two-field model (b and d). Bumps are created with two inputs (grey
lines) with AI1,2 = 2, σI1,2 = 1, dI = 1 applied simultaneously at time
t1 = 1 at positions xc1 = −9 and xc2 = 9. At a later time t3 = 20, an
additional weak input with AI1 = 0.5, σI1 = 1, dI = 1 is applied to

one of the memories at xc1 . (a and b) Temporal evolution of activity
at sites xc1 (black lines) and xc2 (red lines) in both models. (c and
d) Snapshots showing the final solutions at time t = 50. The kernel w

is given by (2) with Aex = 2, Ain = 1, σex = 1.25, σin = 2.5 and
winh = 0.1. Threshold θ = 0.4 (dotted line), K = 0

Fig. 13 (a and b) Retro-cueing task in the Amari model (a) and in the
two-field model (b). Bumps were initially created with two inputs with
AI1,2 = 0.75, σI1,2 = 1, dI = 1. Later at time t = 20 an additional
input with AI1 = 2, σI1 = 1, dI = 1 was applied to one of the memo-
ries. The kernel w is given by (2) with Aex = 2, Ain = 1, σex = 1.25,
σin = 2.5 and winh = 0.2. Threshold θ = 0.4, K = 0. (c) Recov-

ery of a “forgotten memory” in the two-field model using unspecific
input. A subthreshold bump is first created with an input with ampli-
tude AI1 = 0.45 < θ and σI1 = 1 applied at time t = 1 for duration
dI = 1. A spatially constant input I (x) = 0.4 is applied at time t = 10
for the duration dI = 1. Parameters of the kernel as in panels (a and b).
K = 0, θ = 0.5

in the computational studies of the activity-silent WM mech-
anism, the application of an unspecific input signal that does
not provide any spatial information is sufficient to restore
a subthreshold memory trace into a suprathreshold activity
pattern.

4.2 Interacting bumps

An attractive feature of continuous attractor models is that
they accurately explain errors in WM and other behavioral
tasks as a distance-dependent interaction between two or

more neural population representations (Almeida et al. 2015;
Erlhagen et al. 1999; Johnson et al. 2009; Wilimzig et al.
2006). DNF models with Mexican-hat connectivity predict
that when two transient inputs are presented in close prox-
imity, the network dynamics exhibits an attraction effect
(Amari 1977; Krishnan et al. 2018). As shown in Figure
14, the Amari model makes the strong prediction that there
is no possibility to independently store very similar points
of a continuous feature dimension since the two initially
disjoint activity patterns will completely merge. This attrac-
tion effect has been exploited for instance to model target
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selection of fast saccadic eye movements that are known to
land between two close targets (“averaging saccade” Wil-
imzig et al. 2006). However, the finding in a WM task of no
performance impairment when items in memory are simi-
lar has challenged the generality of the averaging hypothesis
of simultaneously processed nearby feature values (Lin and
Luck 2009). The two-field model develops in response to
the same transient inputs a broad activation pattern with
two peaks which is clearly distinguishable from a one-bump
solution triggered by a single input. Interestingly, a recent
experiment investigating a possible neural substrate of sac-
cadic averaging in the superior colliculus (SC) reports that
the simultaneous stimulation of two nearby SC sites evokes
a single merged activation pattern centered between the two
sites (Vokoun et al. 2014). Consistent with the prediction
of the two-field model, the spread of activation appears to be
significantly wider than the localized activity pattern induced
by a single stimulation. In WM applications, a downstream
read-out mechanism might interpret the existence of the two
peaks and the relatively suppressed activity at the intermedi-
ate position as evidence for the storage of two similar inputs
(Lin and Luck 2009). An attraction effect still manifests since
the peak distance is smaller than the original input distance
(Almeida et al. 2015).
For intermediate input distances, the gradient in the lateral
inhibition profile causes the peaks of activity to shift away
from each other. Direct neurophysiological evidence for such
a repulsion effect has been reported (Erlhagen et al. 1999;
Jancke et al. 1999) and the finding of a repulsive bias in
some behavioral experiments is in good agreement with the
qualitative model prediction (Almeida et al. 2015; Johnson
et al. 2009; Wang et al. 2012). However, the predicted size
of the repulsion effect differs significantly for the Amari and
the two-field models. The two transient inputs, which in the
example shown in Figure 15 overlap to some extent, set the
dynamics of the two-field model in the basin of attraction of
a two-bump solution with an inter-peak distance larger than
the input distance. In the Amari case, the attractor state rep-
resents two individual bumps located at a further increased
distance for which the mutually inhibitory interaction is spa-
tially uniform. As shown in Fig. 6, the magnitude of the
repulsive bias can be controlled by the parameter σinh .
A third type of a distance-dependent interaction effect dis-
cussed in continuous attractor models is bump annihilation
(Krishnan et al. 2018; Wei et al. 2012). It may occur when a
bump is closely flanked by two others. Figure 16a shows
an example of the Amari model where the summed lat-
eral inhibition of the two flanking bumps suppresses the
input-induced suprathreshold activity at the intermediate
position x = 0, resulting in a complete memory loss. Bump
annihilation thus limits the number of items that can be simul-
taneously stored in a field of a given size. The situation is
different for the integrator model where the same input pat-

tern develops three bumps (b). Since the middle bump at
x = 0 has a slightly smaller width and amplitude, it shows
that the bump shape can be affected by the existence of nearby
activity patterns. Note that with increasing input distance,
this inhibition effect would diminish and finally disappear
completely, leading to a memory representation of three inde-
pendent locations (not shown). With inputs closer to the
threshold, the middle bump becomes suppressed below the
threshold but the activity still remains sustained (c). Recent
experimental findings support the notion of a neural encod-
ing and maintenance of weak visual inputs into WM that do
not reach the threshold for conscious perception but may still
affect goal-directed behavior (Soto et al. 2011). Models of
capacity limits of working memory are silent on this issue
(Trübutschek et al. 2017). Future research might attempt to
more directly test the hypothesis that sustained subthreshold
activity constitutes a neural substrate of conscious or uncon-
scious memory.

4.3 Bump drift and bump interaction in the
stochastic integrator model

To evaluate the impact of random fluctuations on the evolu-
tion and maintenance of input-driven bumps of the two-field
model, we use a stochastic version of the field equations with
additive noise. It is given by

∂u(x, t)

∂t
= − u(x, t) + v(x, t) + I (x, t) + ε1/2dW (x, t)

+
∫

Ω

w(|x − y|) f (u(y, t) − θ)dy,

(27a)

τv

∂v(x, t)

∂t
= − v(x, t) + u(x, t)

−
∫

Ω

w(|x − y|) f (u(y, t) − θ)dy,

(27b)

where dW (x, t) is the increment of a spatially correlated
Wiener process such that

〈dW (x, t)〉 = 0, (28)

〈dW (x, t)dW (y, s)〉 = C(x − y)δ(t − s)dtds, (29)

and ε 	 1 is the noise amplitude.
Closely following the conceptually related bump attractor
model of Carroll and colleagues (Carroll et al. 2014), we
choose a cosine spatial correlation function

C(x) = π cos(x). (30)

The correlation function C(x − y) can be related directly to a
spatial filter F(x − y). The term dW (x, t) can be defined by
convolving a spatially white noise process dY(x, t), satisfy-
ing 〈dY(x, t)〉 = 0 and 〈dY(x, t)dY(y, s)〉 = δ(x − y)δ(t −
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Fig. 14 Merging bumps in the
Amari model (left column) and
in the two-field model (right
column). Bumps created with
two inputs with AI1,2 = 1.5,
σI1,2 = 1, dI = 1 , applied at
time t = 1 at positions
xc1,2 = ±1.7. (a and b)
Snapshots at time t = 2 when
input (gray lines) is still present.
(c and d) Steady states at time
t = 50. (e and f) Space-time
plot of field activity. The kernel
w is given by (2) with Aex = 2,
Ain = 1, σex = 1.25, σin = 2.5
and winh = 0.1. Threshold
θ = 0.4 (dotted line), K = 0

s)dtds with the filter F(x − y) such that

dW (x, t) =
∫

Ω

F(x − y)dY(y, t)dy, (31)

where F(x − y) = C(x − y). The noise term is added to
the u-equation only. This allows us to directly compare the
simulations of the two-field model with the behavior of the
Amari model. Our simulations show that adding the same
noise model also to the v-equation does not change the qual-
itative model predictions reported here.

4.3.1 Bump drift

Due to the neutral stability of a bump in a continuous
attractor network, random noise may lead to a drift of the
bump in the absence of tuned external input (Camperi and
Wang 1998; Carroll et al. 2014; Kilpatrick and Ermentrout
2013). Stochastic dynamic field models thus predict a time-
dependent loss of precision of WM representations. Direct
neurophysiological and behavioral evidence for this predic-
tion comes from a recent study using a spatial WM paradigm
in which a monkey had to make saccadic eye movements to a

remembered target. The results showed that the recalled loca-
tion deviates on a trial-by-trial basis precisely in the direction
of the drift of the tuned population activity at the end of the
delay period (Wimmer et al. 2014).
Figure 17 shows for a single run of the stochastic integrator
the bump drift at a fixed time (a) and in a space-time plot
(b). Larger drifts represent larger errors of the memorized
location relative to the location represented by the neural
activity during input presentation at time t = 0 at position
x = 0. Since recall precision is known to be influenced by
bottom-up sensory salience and top-down factors like retro-
cues, the bump amplitude representing the quality or strength
of the item memory should affect the drift rate (Carroll et al.
2014). We tested this prediction in simulations of the stochas-
tic model with inputs of varying strength (100 simulations
for each strength). As shown in panel (c), the variance of the
bump center position decreases systematically with increas-
ing bump amplitude. For the highest amplitude tested, the
fluctuations over time around the true input position are rather
small. This dependence of the drift on memory strength
replicates the results obtained with the DNF model proposed
by Carroll and Kilpatrick (Carroll et al. 2014). Since there is
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Fig. 15 Repulsive bumps in the
Amari model (left column) and
in the two-field model (right
column). Bumps created with
two inputs with AI1,2 = 1.5,
σI1,2 = 1, dI = 1, applied at
time t = 1 at positions
xc1,2 = ±1.9. (a and b)
Snapshots at time t = 2 when
input (gray lines) is still present.
(c and d) Steady states at time
t = 200. (e and f) Space-time
plots of field activity. The kernel
w is given by (2) with Aex = 2,
Ain = 1, σex = 1.25, σin = 2.5
and winh = 0.1. Threshold
θ = 0.4 (dotted line), K = 0.
The solution in panel d is
solution P4 shown in Fig. 5

Fig. 16 Space-time plots of field activity in the Amari model (a) and
the two-field model (b and c). (a) Bump annihilation in the Amari
model. Bumps created with three inputs with AI1,2,3 = 1, σI1,2,3 = 1,
dI = 1, applied at time t = 1 at positions xc1,2,3 ∈ {−5.5, 0, 5.5}. (b and
c) Three-bump solutions of the two-field model. Bumps created with

three inputs with AI1,2,3 = 1.5 (b) and AI1,2,3 = 1 (c) applied at time
t = 1 at positions xc1,2,3 ∈ {−5.5, 0, 5.5}. Remaining input parameters
σI1,2,3 = 1, dI = 1. The kernel w is given by (2) with Aex = 2, Ain = 1,
σex = 1.25, σin = 2.5 and winh = 0.2. Threshold θ = 0.4, K = 0

no dependence of bump shape on input features in the Amari
model, there is a unique drift pattern. For the present param-
eter setting, it is comparable with the pattern observed with
input strength AI = 3 of the two-field model.

4.3.2 Bump interaction

As shown in section 4.2, recall precision in continuous attrac-
tor models also depends on potential interference of nearby
memory traces. We have therefore tested the behavior of
the stochastic integrator model with two simultaneously pre-
sented inputs. They were placed at a critical distance where
in the deterministic case a repulsion effect manifests and
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Fig. 17 Bump diffusion in the stochastic two-field model. (a) Bump
solution at time t = 60. The initial condition is a bump centered at
x = 0. (b) Space-time plot showing the bump drift. The magenta
line indicates the bump center. (c) Variance of bump position computed
for N = 100 numerical simulations of the model with different input

strengths AI . Remaining input parameters σI1 = 1, dI = 1. The kernel
w is given by (2) with Aex = 2, Ain = 1, σex = 1.5, σin = 2.5 and
winh = 0.3. Threshold θ = 0.25 (dotted line in panel (a)), K = 0,
ε = 0.005, L = π . The spatial and temporal resolution is dx = 0.01
and dt = 0.01, respectively

a small reduction of the input distance (2 dx , where dx is
the numerical mesh size) causes attraction (Almeida et al.
2015). Figure 18 (a) shows overlaid activity profiles of an
evolving two-bump solution taken at a fixed time in differ-
ent model simulations. As can be clearly seen, the additive
noise causes a switching between either attraction or repul-
sion in different trials. Panel (b) shows that the magnitude
of the interference effect appears to be greatly reduced when
stronger inputs are applied. Panel (c) shows this dependence
on input strength/bump amplitude in a more quantitative
manner by plotting the variance of the inter-peak distance
as a function of time. To allow a direct comparison, Figure
19 depicts, for the same input distance, the activity pattern
at a fixed time in two runs of the stochastic Amari model. It
develops either a single bump (a) or two bumps with repulsion
(b). The model simulations reveal that the single bump may
be the result of a suppressive interaction or a fast merging of
the input-induced activity patterns.

4.4 Gated integrator model

The two-field model performs a continuous integration of
input streams of any strength. This is a desirable fea-
ture for decision making since also weak evidence may
bias decision processes involving multiple alternatives. One
potential problem with the perfect integrator mechanism is
that the pure accumulation of noise at field sites without spe-
cific input may in principle lead to the creation of bumps.
Other neuro-inspired integrator models solve this problem
by implementing a preset threshold mechanism that controls
the minimum level of evidence entering the accumulation
process (Cain et al. 2013; Koulakov et al. 2002). We propose
a model extension inspired by experimental findings showing
that neurons in local circuits may rapidly change their func-
tional connectivity according to behavioral demands (Haider
and McCormick 2009). In tasks requiring the accumulation
of evidence, this modulation should affect the balanced exci-

tation and inhibition in the local feedback loops responsible
for the stabilization of population activity at any level. Only
neurons that appear to be pre-activated by input above the
noisy baseline should participate in these loops. The cellu-
lar and network mechanism by which functional connections
are rapidly formed and broken are currently an active area of
research (Haider and McCormick 2009). We apply the com-
putationally simple idea of a state-dependent gating of the
local coupling between the two fields by a threshold func-
tion g(u). A step function with threshold κ ≤ θ is used for
simplicity. The model reads

∂u(x, t)

∂t
= − u(x, t) + v(x, t)g(u(x, t) − κ)

+ I (x, t) + ε1/2dW (x, t)

+
∫

Ω

w(|x − y|) f (u(y, t) − θ)dy,

(32a)

∂v(x, t)

∂t
= − v(x, t) + u(x, t)g(u(x, t) − κ)

−
∫

Ω

w(|x − y|) f (u(y, t) − θ)dy.

(32b)

The gating mechanism delays the perfect integration of evi-
dence until a target location is selected by an initial input
of strength AI > κ , rendering a bump creation by accumu-
lated (weak) noise unlikely. Figure 20 compares the pattern
formation in response to an input at x = 0 in the stochastic
model without (a) and with gating mechanism (c). Without
gating, in addition to the input-driven bump at x = 0 various
noise-induced bumps at other locations develop. The impact
on noise integration can be seen when comparing the sum of
u(x) and v(x), representing the total of accumulated external
input and noise (b). For the gating case, the sum represents
the bell-shaped input slightly corrupted by noise and small
random fluctuations at other field sites (d). It is important to
notice that the gating mechanisms does not destroy the exis-
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Fig. 18 Bump attraction/repulsion due to noise in the two-field model.
Sample profiles of the u-population at time t = 30 created with two
inputs with AI1,2 = 1 (a) and AI1,2 = 3 (b). The percentage of “merged”
solutions for inputs with amplitudes AI ∈ {1, 2, 3} in N = 500 trials
was respectively 60%, 98% and 100%. (c) Variance of the inter-peak
distance as a function of time computed for N = 500 numerical sim-

ulations of the model for different input strengths AI . The inputs with
amplitudes AI1,2 = 1, AI1,2 = 2, AI1,2 = 3, are applied at positions
xc1,2 = ±2.25. Remaining parameters of the inputs are σI1,2 = 1 and
dI = 1. The kernel w is given by (2) with Aex = 2, Ain = 1, σex = 1.5,
σin = 2.5 and winh = 0.1. Threshold θ = 0.25 (dotted line), K = 0,
ε = 0.0025, L = 3π , dx = 0.01, dt = 0.01

Fig. 19 Bump merging (a) and repelling (b) in the Amari model due
to noise. The inputs with amplitudes AI1,2 = 1 are applied at posi-
tions xc1,2 = ±2.25. Remaining parameters of the inputs are σI1,2 = 1
and dI = 1. Vertical lines indicate the sites xc1,2 where the inputs

were applied. The kernel w is given by (2) with Aex = 2, Ain = 1,
σex = 1.5, σin = 2.5 and winh = 0.1. Threshold θ = 0.25 (dotted
line), ε = 0.0025, L = 3π , dx = 0.01, dt = 0.01

tence of subthreshold bumps since for sites x with u(x) > κ

a continuous integration of weak inputs is still supported.
The gating mechanism is also important for resetting stimulus-
selective persistent activity to a homogeneous resting state.
In WM applications of continuous attractor networks, it is
typically assumed that a switch between a bump attractor
and a stable resting state can be achieved by applying a
transient inhibitory input to all neurons (Camperi and Wang
1998). Figure 21 illustrates this “forgetting” mechanism in
a model simulation without noise. The neural integrator first
develops a bump in response to a localized excitatory input
which is followed by a strong decrease in activation when
at time t = 21 the homogeneous inhibition is applied to the
u-population. Functionally, the two fields become decoupled
since g(u) < κ,∀x , and the subthreshold activity in both lay-
ers converges to the homogeneous resting state, u = v = 0,
as predicted by the Amari model (Amari 1977). Without
the gating mechanism, the field dynamics would stabilize a
subthreshold bump.

5 Discussion

Here we have presented a bump attractor model which is
able to sustain localized activity patterns evoked by exter-
nal inputs which differ in shape and amplitude. The model
simulations demonstrate that the network dynamics not only
supports the encoding of a single input value but also the
storage of certain stimulus characteristics. This is in line
with a growing body of experimental evidence showing a
correlation between the level of persistent delay activity and
stimulus attributes such as intensity/contrast (Constantinidis
et al. 2001) or duration (Brody et al. 2003a). The possibility
to stabilize localized activity patterns with a continuum of
amplitudes can be in principle also used to model the exper-
imentally observed dependence of persistent activity on task
demands such as the amount of training (Qi et al. 2011; Histed
et al. 2009) or varying choice certainty (Kiani and Shadlen
2009; Basso and Wurtz 1997). We have recently applied an
extension of the two-field model to two spatial dimensions as
part of a neuro-inspired robot control architecture for natu-
ral human-robot interactions. It implements the learning and
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Fig. 20 Simulations of the
two-field model (32) with
different threshold values κ and
the Mexican-hat connectivity
given by (2) with Aex = 3,
Ain = 1.5, σex = 1.4, σin = 3
and winh = 0.2, θ = 0.75,
K = 1. The spatial fluctuations
are given by a cosine-correlated
noise with ε = 0.005. The bump
at x = 0 is created with a
localized input with AI1 = 2,
σI1 = 1.5, dI = 1. (a,b) no
gating; (c,d) κ = 0.15

Fig. 21 Space-time plot showing the forgetting mechanism. A bump is
first triggered by a localized input applied at t = 1. This is followed by
a decay to resting state when at time t = 21 a homogeneous inhibitory
input is applied to the u-population of (32). The connectivity function
is given by (2) with Aex = 3, Ain = 1.5, σex = 1.4, σin = 3 and
winh = 0.2. The localized input is defined by AI1 = 1, σI1 = 1.5,
dI = 1 and the homogeneous inhibition by A = −1.5 and dI = 1.
Thresholds κ = θ = 0.5, K = 1

adaptation of action planning and value-based decision mak-
ing in a dynamic environment (Wojtak et al. 2021).
The model works as a robust neural integrator since the bump
amplitude faithfully reflects the accumulation of input sig-
nals over time. This contrasts with the behavior of most
attractor networks applied in working memory and deci-
sion making tasks in which the stable state corresponds to a
stereotyped pattern of activity exclusively determined by the
recurrent interactions within the network. The input depen-
dence is achieved by combining a lateral-inhibition type
network connectivity with local inhibitory and excitatory
feedback mechanisms that are able to stabilize input-induced
changes of the population activity at any level. A biophysi-
cally mechanistic formulation of the processing principles

based on two coupled field equations of Amari-type is
amenable to mathematical analysis. Being able to rigorously
analyze the existence and stability of bump solutions and their
dependence on model parameters is a major advantage over
more complex, biophysically realistic models when trying to
explain the behavior of cognitive agents.
Using an identical parameter set allowed us to directly com-
pare the performance of the two-field model with the classical
Amari model with Mexican-hat coupling. The network with
the balanced local feedback exhibits several distinct features.
First, two or more stable regions of excitation may exist at a
distance where a gradient in the lateral inhibition profile pre-
dicts a merging or drifting of the bumps in the Amari model.
Moreover, the lateral feedback excitation of the two-field
model facilitates in general the formation of memory bumps.
This is particularly evident in a sequential stimulus protocol
in which lateral inhibition in the Amari model may prevent
the encoding of an input in a stable activity pattern. This is
true even for the case of a spatially uniform lateral inhibition
for which a multi-bump solution exists. The two-field model
thus predicts a higher working memory capacity without the
need to refer to additional processing mechanism like top-
down excitation (Edin et al. 2009) or a stimulus-selective
synaptic facilitation (Mongillo et al. 2008). Second, the acti-
vation pattern induced by two nearby inputs do not merge
completely into a single bump at an intermediate position but
displays a wide plateau in its profile. This result is consistent
with the prediction of biophysically realistic bump attractor
networks (Wei et al. 2012) and has been described in electro-
physiological stimulation studies (Vokoun et al. 2014). The
higher uncertainty expressed by the wider activity distribu-
tion could be used by a downstream read-out system in cue
integration and decision making tasks. Third, the two-field
model supports the existence of stable subthreshold activity
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patterns. In the context of the retro- cueing paradigm, we have
argued that such patterns might represent less-salient items
that become suppressed below threshold by means of lateral
inhibition from bumps representing cued items. The experi-
mental observation that neural memory representations often
degrade to a large extent during the delay period has been
taken as evidence for an active-silent state of working mem-
ory encoded in synaptic changes (Mongillo et al. 2008). The
model simulations however suggest that postulating such a
latent memory state might not be necessary at least for the
retro- cueing task (Schneegans and Bays 2017). The infor-
mation represented by weak sustained activity is not lost but
can be restored with a spatially unspecific cue.
Unlike in bistable attractor models of Amari type, the base-
line activity of the neural integrator is not a stable state.
A forgetting mechanism can thus not be implemented by
simply applying a sufficiently strong inhibitory input that
destabilizes existing bumps. For working memory applica-
tions, we have proposed a simple gating mechanism for the
local feedback which restores the stable resting state of the
Amari model without destroying the existence of subthresh-
old bump solutions.
The possibility to represent stimulus attributes in the bump
shape allows us to make predictions about the impact of
for instance input strength (or contrast) on working mem-
ory performance. Simulations of the stochastic version of the
two-field model reveal that the noise-induced drift of a sin-
gle bump in the continuous attractor network decreases with
increasing bump amplitude associated with stronger inputs.
Larger bump amplitudes also greatly reduce the interaction
effects of two input-induced bumps at a critical distance
which can be described as repulsion or attraction when con-
sidering the relative peak positions. The neural integrator
model shares the prediction that larger bumps provide more
faithful input representations over time with the neural field
model of lateral inhibition type introduced by Carroll et al.
(2014). It consists of separate excitatory and inhibitory pop-
ulations and implements a tight balance of excitation and
inhibition within the network to support a continuum of pos-
sible bump amplitudes. Importantly, achieving this balance
requires that the recurrent excitation is inversely proportional
to the gain of a piecewise linear transfer function. Any change
in the tuning of the form of the nonlinearity or the connec-
tivity will destroy this balance. The two-field model is robust
to such changes since the same connectivity and nonlinear
transfer functions are used for the u-field and the v-field. An
important consequence is that the assumption of a perfectly
symmetric connectivity pattern in continuous bump attractor
networks can be relaxed. Model simulations with a slightly
asymmetric connectivity profile or a profile with random per-
turbations show that localized activity patterns with a biased
or distorted shape are stabilized by the network dynamics.
Mitigating the inherent structural instability of bump attrac-

tor models offers new perspective for applications of dynamic
field theory that include for instance the learning of the con-
nectivity pattern (Fotouhi et al. 2015). We will explore this
line of research in future work.
The two-field model shares the robustness to global changes
in the neural gain and perturbations of the translation-
invariant network structure with the firing rate model of
working memory proposed by Lim and Goldman (2013). It
consists of pools of interconnected excitatory and inhibitory
neurons that are able to maintain graded levels of spa-
tially tuned patterns of persistent activity without widespread
lateral inhibition. It implements principles of negative-
derivative feedback control by assuming that positive feed-
back mediated by recurrent excitation and negative feedback
mediated by recurrent inhibition have equal strength, but
inhibition operates on a faster timescale. Perturbations that
affect the tight excitation/inhibition balance disrupt the mem-
ory performance. Also the two-field model is sensitive to
perturbations in the balance of recurrent inputs from neigh-
boring neurons and the local inhibitory feedback that a
neuron receives. For instance, applying a nonlinear response
function with saturation for the v-population will cause a
saturation limit of the input integration. However, it can be
expected that lateral inhibition acts as a stabilizing factor if
the imbalance is not too strong. Further work is needed to sys-
tematically investigate how changes applied to the gain, the
amplitude or the spatial ranges of the recurrent interactions
in just one of the fields affect the pattern formation process.
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spatial convolution of w and f we employ a fast Fourier
transform (FFT), using MATLAB’s in-built functions fft
and ifft to perform the Fourier transform and the inverse
Fourier transform, respectively. Periodic boundary condi-
tions are used. By choosing a sufficiently large domain size,
we make sure that the localized patterns evolve sufficiently
far from the boundaries.
For performing numerical continuation, we use the method
described in (Rankin et al. 2014) and adapt MATLAB
code available in (Avitabile 2016). The main advantage of
this method is that it can be applied directly to the full
integral model. This is possible due to the usage of Newton-
GMRES solvers combined with a fast Fourier transform
(FFT) employed for computing the convolution term (Rankin
et al. 2014).
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