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Adaptive timing in a dynamic field architecture for

natural human-robot interactions

Abstract

A close temporal coordination of actions and goals is crucial for natural and
fluent human-robot interactions in collaborative tasks. How to endow an au-
tonomous robot with a basic temporal cognition capacity is an open question.
In this paper, we present a neurodynamics approach based on the theoret-
ical framework of dynamic neural fields (DNF) which assumes that timing
processes are closely integrated with other cognitive computations. The con-
tinuous evolution of neural population activity towards an attractor state
provides an implicit sensation of the passage of time. Highly flexible sen-
sorimotor timing can be achieved through manipulations of inputs or initial
conditions that affect the speed with which the neural trajectory evolves. We
test a DNF-based control architecture in an assembly paradigm in which an
assistant hands over a series of pieces which the operator uses among others
in the assembly process. By watching two experts, the robot first learns the
serial order and relative timing of object transfers to subsequently substitute
the assistant in the collaborative task. A dynamic adaptation rule exploit-
ing a perceived temporal mismatch between the expected and the realized
transfer timing allows the robot to quickly adapt its proactive motor timing
to the pace of the operator even when an additional assembly step delays a
handover. Moreover, the self-stabilizing properties of the population dynam-
ics support the fast internal simulation of acquired task knowledge allowing
the robot to anticipate serial order errors.

Keywords: temporal cognition, human-robot interactions, neurodynamics,
adaptation, error monitoring

1. Introduction

Robots that are designed to assist humans in domestic or industrial work-
places must be capable of transferring objects to the human user for successful
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cooperation. Examples include a robot serving a drink (Bohren et al., 2011;
Gulletta et al., 2021), helping to unload a dishrack (Huang et al., 2015), or
providing tools and parts in a joint assembly task (Glasauer et al., 2010; Bi-
cho et al., 2011; Koene et al., 2014). The transfer may be achieved indirectly
by placing the object at a reachable position for the user or by a direct han-
dover. While placing only imposes loose constraints on the object handling,
the cognitive and physical demands of object handovers are quite high since
the receiver has a lifelong experience with smooth human-human handovers.
Various aspects of robot-to-human handovers have been studied over the last
couple of years with the ultimate goal to advance towards an efficient and
seamless coordination of the joint action which meets the expectancies of the
user (Strabala et al., 2013). This includes the role of verbal and non-verbal
cues (e.g., commands, gaze, hand pose (Moon et al., 2014; Grigore et al.,
2013; Bicho et al., 2010)), human-like motion trajectories (Glasauer et al.,
2010; Gulletta et al., 2021), user-aware grasp configurations and modulation
of grip forces (Medina et al., 2016; Cini et al., 2019) or different safety as-
pects (De Santis et al., 2008), just to mention a few (for a recent review see
(Ortenzi et al., 2021)). However, to date much less attention has been paid
to the important role of a close temporal action coordination for successful
team performance (Sebanz and Knoblich, 2009; Maniadakis and Trahanias,
2011). Results of a recent user study in a task in which an assisting robot
hands over a series of tools to a mechanics suggest that the temporal pre-
cision is more important for the user satisfaction than the spatial aspects
of the object transfer (Koene et al., 2014). Some human-robot experiments
have investigated computational mechanisms for action synchronization in
quasi-rhythmic object transfer and manipulation tasks (Huber et al., 2010;
Mörtl et al., 2014) which leaves open the question how the robot may flexibly
adjust its action timing to variable temporal constraints of discrete object
exchanges. A high level of adaptability must be built into any collabora-
tive robot since the order and timing of object transfers may depend on the
preferences of different users (Wilcox et al., 2013). Importantly, close tem-
poral coordination does not necessarily mean that the robot should adopt a
proactive strategy which minimizes the user’s waiting time by holding out
the object the human partner needs next (Huang et al., 2015). Users may
want to interact with the robot at their own pace. This requires that the
robot delays the handover until the user is ready to receive the object at the
exchange position, still ensuring a fluent interaction. This is especially im-
portant in situations in which the human performs additional tasks between
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consecutive object transfers.
In this paper, we test a robot control architecture for adaptive action timing
in an assembly paradigm in which a robot has to hand over a series of objects
in the right order and at the right time to an operator. The robot first takes a
third-person perspective and learns by watching two human experts execut-
ing the task. Subsequently, it substitutes the giver and adapts its action tim-
ing to the pace of the receiver which may vary due to the introduction of new
assembly steps. The control architecture builds on the neuro-computational
principles of a recent Dynamic Neural Field (DNF) model of learning se-
quences with time constraints (Ferreira et al., 2021). It implements evidence
from experimental findings that order and temporal information are bounded
together in memory during learning (O’Reilly et al., 2008). The identity of a
transferred object is represented through the persistent activity of a specific
neural population which increases monotonically with elapsed time since the
start of the object transfer at the exchange position. As a result, the neural
dynamics of a “perceptual memory field” establish in response to a series
of observed handovers a gradient of persistent activity over subpopulations
which carries the information about the serial order and the relative timing
of the transfer events. The stored information can be recalled in a “decision
field” using a ramp-to-threshold dynamics. However, to guide the robot’s ac-
tions in time and to meet the user’s expectancy of a minimal waiting time, the
memory gradient should be adapted to account for the duration of the robot’s
pre-handover phase. Theories of a minimal architecture for joint action pos-
tulate that a successful adaptation could be achieved in the simplest cases by
direct environmental feedback without the need to explicitly represent the
co-worker’s task (Vesper et al., 2010). Following this idea, we implement an
adaptation dynamic in a “motor memory field” which adjusts the strength of
the persistent population activity as a function of an observed temporal mis-
match between the arrival times of the two hands at the exchange position.
In many cases, however, user-adaptive interactions require that the robot has
an explicit model of what the co-worker is expected to do. For instance, to
detect errors in the assembly work, the robot should have a memory of the
temporal order of all parts that the user is going to manipulate including the
ones which are not transferred by the robot. Moreover, the robot should be
able to proactively inform the user about an error before it manifests in overt
behavior. A fast internal simulation of the co-worker’s action plan, which is
often considered a fundamental building block of successful joint action (Se-
banz et al., 2006), supports such proactive timing of a corrective response.
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In the DNF architecture, the evolution of persistent population activity in
an “error monitoring field” is driven by a mismatch between the predicted
and the observed grasping of a specific object.
The remainder of the article is organized as follows. In Section 2, we describe
the joint assembly task and the experimental setup for the HRI experiments.
Section 3 presents the DNF model of adaptive timing. The implemented
neuro-cognitive mechanisms, the model architecture, and the basic model
equations are introduced, and the results of the HRI experiments are dis-
cussed. In Section 4, the extensions of the model architecture for prediction
and action monitoring are explained and the results of an interaction with an
anticipated order error are presented. The final Section 5 provides a critical
discussion of the experimental results and some lines of future research.

2. Joint assembly task

2.1. Task description

The design of the experiment was inspired by a manufacturing scenario
of a robotic assistant handing over a series of objects to a human operator.
The object transfers occur in the context of an assembly task in which the
operator puts together pieces of computer hardware inside a computer case.
Besides receiving three different objects which are initially located in the
workspace of the giver (Agent 1), the operator (Agent 2) also handles pieces
which are located in his own reachable workspace (Figure 1).
The first experiment starts with a learning phase in which the robot observes
two human experts with well synchronized joint actions executing the assem-
bly task. The start and the end of the collaborative work are indicated by
verbal commands given by Agent 2. The robot pays attention to the or-
der and the timing of the three object transfers to subsequently substitute
the human giver. The goal is to adapt its movement timing to the pace of
the human operator thereby minimizing the waiting times for both agents
(Hoffman, 2019). For safety reasons, the speed of the robotic movements is
limited. A proactive coordination strategy thus implies that the robot should
initiate the transfer of the next object when the operator is still working on
the previous assembly step. Since there is no abrupt visual event which may
serve as a go signal, the initiation of actions must be internally triggered
(Maimon and Assad, 2006). The robot’s adaptive timing capacity is further
challenged when the operator changes the initial plan and introduces a new
piece in the assembly work which delays the timing of subsequent object
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Figure 1: Joint assembly task. The assistant (Agent 1) has to handover in the correct
order and at the right time a box, a power supply, and a disc cable to the operator (Agent
2) who also performs additional assembly steps which do not involve the assistant.

transfer.
The second experiment aims at testing an extended joint action architecture
which supports user-adaptive behavior based on shared task knowledge about
the entire assembly plan (Vesper et al., 2010). Here, the robot pays attention
to all object-directed actions performed by the operator including the ones
which do not require a handover. The acquired serial order knowledge allows
the robot to detect order errors based on a mismatch between the predicted
and the observed object-directed action. Importantly, the predictive mech-
anism should be fast in order to timely communicate to the operator which
object he should handle instead.

2.2. Experimental setup

The two agents operate on opposite sides of a table where the computer
hardware parts are initially distributed in the two separate working areas
(Figure 2). The humanoid robot ARoS (Anthropomorphic Robotic System)
was used in the experiments. It consists of a stationary torus on which a 7
DOFs AMTEC arm (Schunk GmbH) with a 3-fingered dexterous hand (Bar-
rett Technology Inc.) and a stereo camera system are mounted. A speech
synthesizer/recognizer (Microsoft Speech API 6.2) supports basic verbal com-
munication (Bicho et al., 2010).
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To focus on the temporal cognition and action prediction challenges of the
task, several aspects have been simplified for the robot’s vision and motor
systems. The hands and the objects are color coded so that the vision system
can robustly detect when the operator’s hand approaches a certain object or
has reached the exchange position. The spatial dimension x of the neural
fields thus represents color. The positions of localized activity patterns or
bumps in the field encode the respective objects (using the abbreviations
in Figure 1 as labels) while the relative timing information is stored in the
bump amplitudes (for details see Section 3). In addition, proprioceptive in-
formation is used to detect when the robot hand has realized the planned
goal posture at the handover location. Sensory information indicating any
delay between the arrival times of the two hands (compare Figure 5) drives
the adaptation of the robot’s movement onset in order to achieve a more
fluent handover in the next joint task execution.
To generate the object-directed robotic movements, we have applied the
posture-based motion planner HUMP (Gulletta et al., 2021). It has been
developed to include human-like motion features which are known to sup-
port more natural and intuitive human-robot interactions. The handovers
take place at a pre-specified position roughly midway between the giver and
the receiver. The grasping of the objects and the final hand-object pose are
chosen to guarantee that the object transfer is safe and comfortable for the
user. For the physical object transfer, we used force information from the
robot’s joints to determine whether or not the object can be released since
it was grasped by the human operator.
The focus in our study on the temporal aspect of object transfers is moti-
vated by user studies (Koene et al., 2014) showing that transfer fluency has a
much higher weight for user satisfaction than the spatial aspects (e.g., users
accept an optional final adjustment for picking up the object from the robot
hand). Note that the situation might be different when task constraints (e.g.,
obstacles) limit the motion of the user (Ortenzi et al., 2021). In this case,
models of the kinematics and the dynamics of the human receiver should be
taken into account in the motion planning to devise an adequate handover
location. In this paper, we address a user model only on the cognitive level
of shared task knowledge in order to support an error monitoring capacity.
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Figure 2: Experimental setup.

3. Dynamic neural field model I: Adaptive timing

3.1. Neuro-computational mechanisms

We start by giving a brief overview about the main neuro-computational
processing principles implemented in the DNF model.
The capacity to hold and manipulate items mentally over behaviorally rel-
evant time scales is fundamental for many cognitive processes such as de-
cision making, learning, or planning action sequences. Neural population
activity which persists after the removal of triggering input stimuli is com-
monly believed to represent a critical neural substrate for cognitive behavior
(Miller and Cohen, 2001; Curtis and Lee, 2010). Dynamic Neural Field mod-
els explain neural activity patterns that remain stable in time by assuming
balanced excitatory and inhibitory feedback loops between neurons in popu-
lations coding for particular inputs or their behaviorally relevant attributes
(Amari, 1977; Schöner, 2016). For continuous-valued information such as
the spatial location or the color of a stimulus, the attractor state takes the
form of a spatially localized activity pattern or bump. Due to the assumed
translation-invariant structure of the recurrent connections, the network can
hold a continuous family of bumps, each representing the memory of a spe-
cific input value. However, the stationary bump attractor constitutes an
incomplete description of stimulus-specific, persistent population activity as
observed in the brain. Often, the persistent activity is not static but varies
systematically over the course of maintenance. The observed monotonic in-
crease (or decrease) has been interpreted as evidence that the self-sustained

7



population activity encodes in addition to input identity also elapsed time
(Brody et al., 2003; Hass and Durstewitz, 2016). The integration of an ad-
ditional threshold accommodation dynamics (Coombes and Owen, 2007) ac-
counts for this pattern of persistent “ramping” activity (Ferreira et al., 2021)
(for an alternative, spatial DNF representation of elapsed time based on a
traveling wave mechanism see (Duran and Sandamirskaya, 2017; Lima et al.,
2022)). In response to a series of transient inputs, the field dynamics es-
tablishes a stable multi-bump pattern over neural subpopulations with an
activation gradient reflecting the relative timing or temporal order of stimu-
lus events. Ramping activity has been also described in motor-related brain
areas (for review see (Svoboda and Li, 2018)). Here, the population activ-
ity typically starts from a pre-activated state reflecting prior task knowledge
(Bastian et al., 1998; Erlhagen and Schöner, 2002) (e.g., a specific object
takes part in the sequential task). The preparatory activity evolves toward
a threshold to trigger a motor response (e,g., a reach-to-grasp movement di-
rected toward the object). Importantly, experimental evidence shows that
the gradual firing rate elevation is not necessarily linked to the integration of
any immediate external event but may also represent an internally triggered,
proactive timing signal (Maimon and Assad, 2006). Finally, and crucial for
our current purposes, the proactive action timing can be efficiently adapted
on a fine temporal scale. Sensory feedback indicating a mismatch between
the expected and the perceived timing of the desired action effect can be
used to adjust the baseline level from which the rise-to-threshold dynamics
starts (Erlhagen and Schöner, 2002; Bogacz et al., 2010).

3.2. Model architecture

An overview of the cognitive control architecture consisting of several
coupled DNFs is presented in Figure 3. The architecture is divided into a
learning part which comprises perceptual and motor memory and an exe-
cution part which controls the what and when of the robotic actions. A
start command spoken by Agent 2 initiates the assembly work. Modeled as
a transient Gaussian input, it triggers the evolution of a bump in the Start
field uSTART . During observation, the presence of this bump controls the lin-
ear threshold accommodation dynamics (blue arrows) responsible for bump
growth in the Sequence Memory and Task Duration fields, uMEM1 and uD,
respectively. During execution, the suprathreshold activity in uSTART drives
through excitatory connections the rise-to-threshold dynamics in the Action
Onset field uACT . The voice command signaling the end of the joint action
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(modeled as a brief inhibitory input) destabilizes the bump and the activity
in uSTART decays back to resting state. The start command also triggers a
bump in uD which at the end of the task represents in its amplitude the total
task duration.
When the vision system detects that the receiver’s hand and a certain object
transported by the giver arrive at the exchange position (compare Figure 4),
the color input of the object triggers the evolution of a bump in the Sequence
Memory field uMEM1 . A demonstrated sequence of object transfers creates
a stable multi-bump pattern in uMEM1 that stores all transfer events with
an activation strength decreasing from item to item as a function of elapsed
time since the start of the collaboration. The stored information about the
order and relative timing of handovers can be sequentially recalled with the
linear rise-to-threshold dynamics in the Action Onset field uACT driven by
the bump in uSTART (Ferreira et al., 2021). The initial subthreshold state
of the field is defined by the homogenous inhibitory input from uD given by
the bump amplitude, max(uD), and the spatially modulated excitatory input
from uMEM1 . However, to guarantee a tight synchronization of the robotic
actions with the operator, the robot should adapt its pace in accordance
with the time it takes to reach, grasp and transport each individual object
to the exchange location. This is done in the Action Onset Memory field
uAMEM which at the beginning of the first execution trial contains a copy of
the activity gradient in uMEM1 mediated by excitatory connections. The two
feedback fields, uF1 and uF2 , appear to be preshaped by the activity pattern
in uMEM1 and receive input from the vision system about the detection of the
receiver’s hand (Agent 2) and the object (Agent 1) at the transfer location.
Differences in the temporal evolution of the suprathreshold activities drive
a local threshold adaptation dynamics (red arrows) resulting in a change of
the respective bump amplitude in uAMEM (Wojtak et al., 2017). If the bump
evolution starts earlier in uF2 than in uF1 , meaning that the operator had to
wait for the object, the amplitude appears to be increased whereas in the op-
posite case the amplitude decreases. Finally, bumps in the Past Events field
uPE, which are triggered by the bumps in uF1 and uF2 , represent the memory
of already executed object transfers. Inhibitory connections (dashed line) to
uF1 , uF2 and uACT guarantee that the suprathreshold activity patterns in
these fields become suppressed and the next handover is processed.
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Figure 3: Schematic view of the DNF architecture with several interconnected neural
fields implementing perceptual sequence memory, motor sequence memory, and sequence
recall. The neural fields are spanned over the continuous dimension color which is used by
the vision system to identify the different objects. The spatial positions of the activation
bumps indicate which objects are currently processed. Sensory inputs include vision,
proprioception and simple voice commands indicating the start and the end of the assembly
work. For details see the text.

3.3. Model equations

We describe here the main equations of dynamic field theory that we have
used to implement the neural processing mechanisms. A detailed description
of each layer of the architecture together with the model parameters can be
found in the Appendix.
To implement persistent neural population activity, we use the continuous
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attractor network first proposed and analyzed by Amari (1977). In each
field, the activity u(x, t) at time t of a neuron at position x, representing a
certain value of the continuous color dimension, is governed by the following
integro-differential equation:

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

w(x− y)f(u(y, t))dy − h(t) + S(x, t), (1)

where τ defines the time scale of the field dynamics, S(x, t) represents the
time dependent localized input at site x from external sources (e.g., speech,
vision) and/or connected fields, h(t) defines the baseline level to which the
field activity converges without external stimuli, the coupling function w(x−
y) determines the distance-dependent connection strength between neurons
x and y, and f(u) gives the firing rate which is chosen as the Heaviside
function,

f(u) =

{
1, u > 0,

0, u ≤ 0.
(2)

In model layers in which only a single bump may exist at a time (e.g., uACT )
the connectivity function is of lateral inhibition type:

w(x) = wexce
(x2/2σ2

exc) − winhib, (3)

where wexc > 0 and σexc > 0 define, respectively, the amplitude and standard
deviation, and winhib > 0 represents a constant lateral inhibition.
To enable in the fields with memory functionality a robust encoding of a
series of inputs in a multi-bump pattern, we adopt a connectivity function
with oscillatory rather than monotonic decay (Ferreira et al., 2016; Laing
et al., 2002):

w(x) = A−b|x|(b sin |αx|+ cos(αx)), (4)

where the parameter b > 0 controls the rate at which the oscillations in w(x)
decay with distance. The parameters A and α control the amplitude and the
zero crossings of w(x), respectively.
A multi-bump solution may also exists for a kernel of type (3) with mod-
erate lateral inhibition level winhib (Erlhagen and Bicho, 2006). However,
the creation of this pattern with sequentially presented inputs is much more
vulnerable to noise and variations in input characteristics such as strength,
duration and width.
The strength of individual event representations in uMEM1 (in an analogous
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way also the bump amplitude in uD) is controlled by a state-dependent dy-
namics for the baseline activity hMEM1(x, t) (Coombes and Owen, 2007):

∂hMEM1(x, t)

∂t
= (1−f(uMEM1(x, t)))(−hMEM1(x, t)+hMEM01

)+
1

τhMEM1

f(uMEM1(x, t)),

(5)

where f(u) is again the Heaviside function, hMEM0 < 0 defines the level to
which hMEM converges without suprathreshold activity at position x and
τhMEM1

> 0 measures the growth rate when it is present.
For the recall of the memorized task information in uACT , we apply a linear
ramping dynamics for the baseline activity driven by the integral of the pop-
ulation activity in uSTART :

dhACT (t)

dt
= βACT

∫
Ω

f(uSTART (x))dx, hACT (t0) ≤ 0. (6)

Changing the value of βACT > 0 affects the speed of task execution, while
preserving the memorized relative timing of object-directed robotic actions.

The adaptation of the bump amplitudes in uAMEM is based on a com-
parison between the bump evolution in uF1 and uF2 which should occur si-
multaneously in case of synchronized team behavior. To compensate for a
detected temporal mismatch, we apply a learning rule proposed in (Almeida
and Ledberg, 2010) to adapt the baseline level in uAMEM in the k-th trial:

hAMEMk+1
=


hAMEMk

1 + β
, if uF2 > 0 and uF1 < 0, i.e., robot is too late,

hAMEMk

1− β
, if uF2 < 0 and uF1 > 0, i.e., robot is too early,

hAMEMk
, otherwise.

(7)
The change in the baseline activity of uAMEM is formalized by the follow-

ing h-dynamics:

∂hAMEM(x, t)

∂t
= β(1− f(uF2(x, t))f(uF1(x, t)))(f(uF1(x, t))− f(uF2(x, t))),

(8)
where f(u) is again the Heaviside function and β is the adaptation rate pa-
rameter.
As the required temporal adjustments will most likely differ for each of the
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object transfers, we apply the adaptation dynamics locally at field sites with
suprathreshold activity representing the currently prepared object-directed
action. A larger bump amplitude in uAMEM reduces the gap between the
level of pre-activation and the response threshold in uACT , leading to a faster
initiation of the object transfer movements, whereas a reduced bump ampli-
tude has the opposite effect.

3.4. Results

Figure 4 shows snapshots of the learning phase of the first human-robot
experiment in which the robot ARoS observes the human team performing
a fluent transfer of the three pieces of computer hardware as part of the as-
sembly task (top row). The giver adapted her movement timing to the pace
of the operator by taking into consideration his availability to receive the
object. The robot’s camera view (middle row) reveals that at the moment
of each handover, ARoS has detected the respective color-coded object and
hands in the exchange area. The object color drives the evolution of a bump
in the memory field uMEM1 . Panel (H) depicts the time course of activity
of the three subpopulations tuned to the different color inputs where time
t = 0 indicates the start of the collaboration. Due to the threshold accom-
modation dynamics, the firing rate consistently increases until the end of the
assembly task. Panel (G) shows the established activation gradient encoding
the temporal order of the handovers (magenta(HB)-red(HPS)-yellow(HC)).
ARoS is able to autonomously recall the stored order and the relative tim-

ing information with the rise-to-threshold dynamics in the action onset field
uACT which appears to be preshaped by the inputs from uD and uAMEM .
However, a tight action synchronization with the receiver is not guaranteed
since the recall speed can be too fast or too slow resulting in significant wait-
ing times for the robot or the operator at the exchange position. Figure 5
shows examples from the camera view in which the robotic hand with the
object arrives too late (panel A) or too early (panel B).
Assuming equal time constant for the h-dynamics in uMEM1 and uACT (τhMEM1

=
1/βACT ), in the first joint execution trial, the handover of the first object ap-
pears to be delayed by the time the robots takes to transport the object to
the exchange position. Since the duration of the robot’s pre-handover phases
are object (and hardware) specific, a local adaptation of the bump amplitude
in uAMEM is required to compensate for the timing errors. Figure 6 shows
snapshots with time stamps (in seconds) of the three handovers. In the first
joint task execution (top row), ARoS starts the transfers of the box (t = 33s)
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Figure 4: (A-C) Video snapshots of the sequence learning.(D-F) Camera view. (G)
Sequence memory of Agent 1. (H) Time course of activation in uMEM1

.

and the disc cable (t = 175s) too late whereas it holds out the power supply
for the operator when he is still mounting the disc (t = 84s). The bottom row
shows that in the third joint execution trial, the adapted movement onset
timings result in object transfer with minimal waiting times for both agents
at the exchange location.

Figure 7 presents a closer look at the preshaped field uACT at time t = 0
(left) and the time course of neural activity in uACT and in the two feedback
fields, uF1 and uF2 (right), for the three execution trials. In the first trial, the
preshape of uACT reflects the memory pattern in uMEM1 (A). A significant
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Figure 5: (A) Vision input to uF2 during recall while the operator’s hand is in a waiting
position. (B) Robot arm in a waiting position. The input to uF1 is provided by the
proprioception of the robotic arm joint angles.

Figure 6: (A-C) Video snapshots of the first execution trial. The first and the third
handovers are delayed by ARoS while it starts the second object transfer too early. (D-F)
Video snapshots of the third execution trial. The timing of all three handovers appears to
be synchronized.

waiting time for the operator during the exchange of the first and the third
object and a shorter waiting time for the robot during the transfer of the
second object can be seen by comparing the time courses in uF1 and uF2 (B).
In the second trial, the pre-activation at time t = 0 following the adapta-
tion in uAMEM is now higher for objects one and three and lower for object
two (C, solid line), resulting in an earlier respectively later movement onset
(compare the top panels in B and D). The operator’s hand still arrives ear-
lier than the object at the transfer location as shown by the earlier evolution
of the bump in uF2 . This temporal offset appears to be compensated in the
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Figure 7: (A, C and E) Action onset field uACT at time t = 0 during the first (A), second
(C) and third (E) execution trial. (B, D and F) Time course of activation in uACT , uF1

and uF2
during the first (B), second (D) and third (F) execution trial.
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third trial (F). The robot starts the second handover earlier due to the higher
pre-activation at the start of the joint task execution (E). Important for user
acceptance, any effort of the robot to increase the interaction fluency signals
to the human partner the willingness to cooperate (Koene et al., 2014).
Table 1 summarizes the waiting times for human and robot for all three ob-
ject transfers in three consecutive joint execution trials. The waiting times
are defined as ∆t = tH − tR where tH and tR indicate the arrival times of the
human hand and the robot hand at the exchange position, respectively. As
can be clearly seen, with increasing team experience a drastic reduction of
the waiting times for all handovers is achieved, realizing a high level of syn-
chronization. Note that the expected precision of the temporal coordination
based on the previous experience is constrained by the fact that the oper-
ator’s execution time for the different assembly steps varies to some extent
from trial to trial.

1st object 2nd object 3rd object
1st trial -17 6 -9
2nd trial -2 -6 -1
3rd trial 2 0 -1

Table 1: Waiting time ∆t = tH − tR (seconds). Negative values indicate that the human
hand arrived first.

Figure 8 shows the results of an additional experiment in which the oper-
ator introduced a memory card as a new piece between the second and third
handover in the assembly process (A). ARoS is not aware of this change in
the initial assembly plan but is still able to adapt its action timing in order
to transfer the third object when the operator is ready to receive it. The
time course of population activity in the fields uACT , uF1 and uF2 before (B)
and after (C) adaptation shows that the robot starts the third transfer with
an additional delay, ∆t, causing a synchronous bump evolution in the two
feedback fields.
It is important to emphasize that the feedback mechanism works irrespec-
tively of the reason for an observed temporal mismatch. For instance, after
the first interactions, the operator may have reduced his overall movement
speed since he perceives the robot in general as less agile compared to a
human co-worker. The robot in turn will automatically adjust the initia-
tion of the object transfer movements to the new pace in order to achieve

17



more synchronous handovers. Such mutual adaptation between co-workers
is a common observation in human-human collaborative tasks (Sebanz and
Knoblich, 2009).

Figure 8: (A) The operator assembles an additional memory card which is located in his
workspace (red circle). (B-C) Temporal evolution of activity in uACT , uF1 and uF2 before
(B) and after (C) adaptation. The waiting time ∆t changes from +10s for the robot to
-1s for the human operator.

4. Dynamic Field Model II: Monitoring and prediction

4.1. Extended DNF architecture

In the previous experiments, the precise temporal coordination of transfer
actions has been achieved based on a short-term adaptation to the opera-
tor’s behavior without knowing what the partner should do next. In many
cases, successful and fluent team performance will benefit from shared task
knowledge. A concrete example is the ability to detect errors based on an
online comparison between the actual and the predicted goal of the partner’s
action. Ideally, errors should be communicated to the partner as fast as pos-
sible before they manifest in overt behavior. Figure 9 depicts an extended
model architecture with three new fields (green box) which support this abil-
ity. A stable activation gradient in the field uMEM2 encodes the information
about the temporal order in which Agent 2 manipulates all assembly parts.
The color cue driving the evolution of the activity pattern is the moment of
grasping the respective part at the exchange position during handover or at
the location in the operator’s workspace. Driven by the bump in uSTART ,
the stored information is sequentially recalled in uSIM . This can be seen as
an internal simulation of the operator’s task. Since the objective is to antici-
pate the operator’s next goal, the bump evolutions should happen on a much
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Figure 9: Schematic view of the extended DNF architecture supporting prediction and
error monitoring based on shared task knowledge. For details see the text.

faster time scale compared to the encoding process. This can be achieved
by choosing a sufficiently large strength parameter βSIM > 0 for the input
integration which increases the slope of the linear ramping dynamics. Me-
diated by inhibitory connections, a bump in uSIM representing a prediction
suppresses the neurons at the corresponding site of the Error Monitoring
field, uERROR, below the resting level. Such a reduction in neural activity
associated with an expected sensory event is broadly referred to as “expecta-
tion suppression” in the neuroscience literature (De Lange et al., 2018). The
net effect is that excitatory input from the feedback field uF2 representing
the object Agent 2 is actually going to manipulate may drive a bump in
uERROR in case of a mismatch only. Moreover, the bump positions in uSIM
and uERROR can be in principle read out by the system to communicate the
serial order error to the operator (e.g., “not object B, but object A”).
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4.2. Results

Figure 10 shows an example of a successful collaboration in which the
robot has established during observation the activation gradients for the se-
rial order of task execution for the assistant (A) and the operator (B). The
temporal evolution of activity in the two feedback fields in the first joint exe-
cution trial (C) reveals that the collaboration occurred without error but the
handovers of the first object (box) and of the last object (disk cable) were
not executed in synchrony. As shown in panel (D), the timing errors have
been corrected in the fourth joint execution trial.

Figure 10: Top: Sequence memory of Agent 1 (A) and Agent 2 (B). For meaning of labels
representing action goals see Figure 1. Bottom: Time course of activation in uF1

and uF2

during the first (C) and fourth (D) joint execution trial.

An example of an execution trial in which a serial error occurred is demon-
strated in Figure 11 where the activation patterns in uSIM , uF2 and uERROR
are overlaid. At time t = 65s, due to the internal task simulation, the
robot expects that the operator is preparing for receiving the power supply.
The activity of the neural population encoding this object-directed action
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in uERROR appears to be suppressed. However, since the operator’s hand
approaches the cable, a bump representing this erroneous goal has evolved
in uF2 which in turn drives the bump evolution in uERROR. The snapshots at
time t = 70s show the stable activation patterns representing the serial order
error. The robot is able to explain the correct object manipulation according
to the assembly plan to the operator. For the present implementation, we
have assumed that this verbal feedback destabilized the bumps in uF2 and
uERROR so that the collaborative work may proceed as planned when the
operator finally grasps the power supply at the exchange position.

Figure 11: Example of an error trial. Snapshots at times t = 65s (A) and t = 70s (B)
of the activity distribution in the fields uERROR (red), uSIM (blue) and uF2

(green) are
shown. The bumps indicate that the predicted action goal RPS (receive power supply)
does not match the observed action goal GS (grasp cable) of Agent 2.

5. Discussion

A close temporal coordination of actions and goals between partners in a
collaborative task is crucial for successful and fluent joint action. As new gen-
erations of robotic assistants move into human-populated environments, the
question of how to endow them with a human-like temporal prediction and
adaptation capacity becomes increasingly important (Maniadakis and Tra-
hanias, 2011; Wojtak et al., 2017; Basgol et al., 2021). We have tested in a
sequential object transfer task a neurodynamics approach which implements
principles of cortical population dynamics as observed in time perception
tasks. The neural activity evolves continuously in time towards an attractor
state representing the memory of a transfer event and elapsed time. Highly
flexible sensorimotor timing can be achieved through manipulations of in-
puts or initial conditions affecting the speed of the neural trajectory towards
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a threshold (Remington et al., 2018). Our study of a temporal cognition
capacity is conceptually in line with DNF-based architectures that achieve
dynamically adapting behaviors to the spatial aspects of perception and ac-
tion (Sandamirskaya et al., 2013; Zibner et al., 2015). The hypothesis that
timing processes in the brain are closely integrated with other cognitive com-
putations has been exploited by neurodynamics models before. For instance,
Maniadakis and colleagues (Maniadakis et al., 2009) used Continuous Time
Recurrent Neural Networks (CTRNN) to learn the temporal constraints of
a rule-switching task. However, different to the fast, activation-based learn-
ing with an existing bump attractor, the shaping of the neural trajectories
in a CTRNN is achieved by weight-based neural plasticity which is slow
and typically requires extensive training (see also (Remington et al., 2018)).
The dynamical systems perspective differs fundamentally from more classical,
AI-based implementations with dedicated time processing modules, possibly
controlled by a computer clock. In (Huang et al., 2015), a rule-based waiting
strategy for handovers with a fixed delay threshold was implemented which
takes into account the states of the giver and the receiver. An optimiza-
tion framework has been used in (Wilcox et al., 2013) to compute a flexible
scheduling policy for a robotics assistant working together with different user
groups in an industrial assembly task. The objective function is derived from
group-specific preference values based on a time assignment to each assem-
bly event. In (Huber et al., 2010), a Kalman filter was applied for online
prediction of the time to pass the next part. This was possible due to the
statistically observed linear dependency between the complexity and the du-
ration of repetitive assembly steps in the particular task. As shown in Figure
8, ARoS is able without any explicit user model to adjust in a single trial its
action timing to sudden temporal changes in the task execution. This is in
agreement with experimental evidence showing that humans can anticipate
events and deliberately control movement initiation based on single observa-
tions (Remington et al., 2018).
The self-stabilizing properties of the field dynamics support the autonomous
recall of the stored information in uAMEM with an unspecific start signal
given by the operator. For predicting the next user goal and detecting er-
rors, the transition between stable states of the fast internal simulation in
uSIM is controlled by bumps encoding sensory feedback.
In future work, we plan to address several limitations of the present HRI
study. The objects and the transfer events were identified by simple color
cues. The DNF model could benefit from more naturalistic sensory signals in
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several ways. First, our focus on an internally generated, cognitive signal for
action timing does not exclude of course that also kinematic features of the
operator’s movements might play a role. Indeed, many studies have revealed
experimental evidence that humans use discriminative features in observed
movements for anticipating others’ motor intentions (Sebanz and Knoblich,
2009). In previous DNF architectures for natural human-robot interactions,
we have used the perception of certain kinematic features to endow robots
with an action understanding capacity (Bicho et al., 2011; Erlhagen and Bi-
cho, 2006). Using an arm-hand tracker would allow us to address the poten-
tial role of kinematic cues for temporal action coordination. However, finding
in the continuous stream of bodily motion a salient feature which is predictive
for the synchronous arrival of both hands at the exchange location will be in
many cases quite difficult and probably requires many execution trials (Cav-
allo et al., 2016). As a related topic, we also plan to extend the DNF approach
to a fluent physical handover phase which requires an interplay of predictive
and feedback mechanisms to guarantee a tight temporal coordination of the
object release (Ortenzi et al., 2021). Second, additional distinctive object
features such as for instance position, size, or orientation should support the
identification of a larger set of objects. Higher-dimensional fields in which
the bump position represents simultaneously several features or architectures
with coupled one-dimensional fields have been used for this purpose in the
past (e.g., (Wojtak et al., 2021; Faubel and Schöner, 2008)). In the current
robotics experiments, the attractor dynamics supported one-shot learning
of the camera input during observation. To increase the robustness of the
encoding process in the face of weak and noisy inputs, we have proposed
in (Ferreira et al., 2021) an additional “perceptual field” in the DNF archi-
tecture in which a gradual buildup of pre-activation during successive task
demonstrations represents expectations about likely objects. As detailed in
(Ferreira et al., 2021), the existence of a perceptual field also allows us to
address the problem of repeated items which naturally occur in many assem-
bly paradigms and other sequential tasks. Typical connectionist models of
serial order implementing the idea of an activation gradient assume that an
item is represented by a single neuron (Bradski et al., 1994). Since a second
instance of the same item will increase the activation level of the already
excited neuron, additional mechanisms have to be introduced into the net-
work architecture (e.g., specific “rank-order” neurons (Silver et al., 2012))
to cope with item repetitions. The field concept assumes that large popu-
lations of recurrently connected neurons encode a specific object but only
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a small portion becomes active in response to a single input presentation.
Excitatory-inhibitory connections between the memory field and the percep-
tual field then ensure that for each object repetition, new subpopulations are
automatically recruited to stabilize an activation bump.

In conclusion, the current study contributes to the largely unexplored
research area of autonomous robots that are able to use temporal information
in the service of more natural and pleasant interactions with human users.
The DNF model implements our thinking that taking inspiration from neuro-
cognitive mechanisms supporting human joint action represents a promising
way to advance toward an efficient learning and flexible control of temporal
coordination in artificial agents. The results of the robotics experiments give
support for the hypothesis that the brain achieves this flexibility by modifying
the initial condition and inputs of fixed recurrent networks (Remington et al.,
2018).

Appendix A. Model equations and parameters

Perceptual Memory

Sequence Memory fields:

τuMEM

∂uMEMi
(x, t)

∂t
=− uMEMi

(x, t) +

∫
wMEM(x− y)f(uMEMi

(y, t))dy

− hMEMi
(x, t) + SMEMi

(x, t), for i = 1, 2,

(A.1)

where

∂hMEMi
(x, t)

∂t
=(1− f(uMEMi

(x, t)))(−hMEMi
(x, t) + hMEM(t0))

+
1

τhMEM

f(uMEMi
(x, t)).

(A.2)

Task start field:

τuSTART

∂uSTART (x, t)

∂t
=− uSTART (x, t) +

∫
wSTART (x− y)f(uSTART (y, t))dy

+ SON(x, t)− hSTART (x, t),

(A.3)
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where

∂hSTART (x, t)

∂t
=(1− f(uSTART (x, t)))(−hSTART (x, t) + hSTART (t0))

+
1

τhSTART

f(uSTART (x, t)).
(A.4)

Task duration field:

τuD
∂uD(x, t)

∂t
=− uD(x, t) +

∫
wMEM(x− y)f(uSTART (y, t))dy

+ SON(x, t)− hD(x, t),

(A.5)

where

∂hD(x, t)

∂t
= (1− f(uD(x, t)))(−hD(x, t) + hD(t0)) +

1

τhD
f(uD(x, t)). (A.6)

Motor Memory

Action Onset Memory field:

uAMEM(x, t) = uMEM1(x)− hAMEM(x, t), (A.7)

where

∂hAMEM(x, t)

∂t
= β(1− f(uF2(x, t))f(uF1(x, t)))(f(uF1(x, t))− f(uF2(x, t))).

(A.8)
Past Events field:

τuPE

∂uPE(x, t)

∂t
=− uPE(x, t) +

∫
wPE(x− y)f(uPE(y, t))dy

− hPE + kPE ∗ uMEM2(x, t)

+ SPEf(uF1(x, t− dPE))f(uF2(x, t− dPE)).

(A.9)

Sequence Recall

Action Onset field:

τuACT

∂uACT1(x, t)

∂t
=− uACT1(x, t) +

∫
wACT (x− y)f(uACT1(y, t))dy

− hACT (t) + (uMEM1(x)−max(uD))

− kACT
∫
wPE(x− y)f(uPE(y, t))dy.

(A.10)
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The dynamics of the resting level hACT is controlled by

dhACT (t)

dt
= βACT

∫
Ω

f(uSTART (x))dx, hACT (t0) ≤ 0. (A.11)

Simulation field:

τuSIM

∂uSIM(x, t)

∂t
=− uSIM(x, t) +

∫
wSIM(x− y)f(uSIM(y, t))dy

− hSIM(t) + (uMEM2(x)−max(uD))

− kACT
∫
wPE(x− y)f(uPE(y, t))dy.

(A.12)

The dynamics of hSIM is controlled by

dhSIM(t)

dt
= βSIM

∫
Ω

f(uSTART (x))dx, hSIM(t0) ≤ 0. (A.13)

Feedback fields:

τuF
∂uFi

(x, t)

∂t
=− uFi

(x, t) +

∫
wF (x− y)f(uFi

(y, t))dy + kFuMEMi

− hF + SFi
(t)−

∫
wPE(x− y)f(uPE(y, t))dy, for i = 1, 2.

(A.14)

Error Monitoring field:

τuERROR

∂uERROR(x, t)

∂t
=− uERROR(x, t) +

∫
wE(x− y)f(uERROR(y, t))dy

− hE − kEuSIM(x, t)f(uSIM(x, t))

+ uF2(x, t)f(uF2(x, t)).

(A.15)
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Sequence Memory fields uMEM1,2

τuMEM
14

wMEM = wosc A = 1, b = 0.8, α = 0.6
τhMEM1,2

1200 (Model I); 600 (Model II)

SMEM1,2 wS = 2, σS = 1.5, gS = 0.25
hMEM(t0) -4.3

Task Start field uSTART
τuSTART

6
wSTART = wlat wexc = 4, σexc = 4.125, winhib = 2.5
hSTART (t0) -4.3

SON wS = 2, σS = 1.5, gS = 0.25

Task Duration field uD
τuD 14

wD = wosc A = 1, b = 0.8, α = 0.6
τhD 1200 (Model I); 600 (Model II)

hD(t0) -4.3
SON wS = 2, σS = 1.5, gS = 0.25

Table A.2: Parameter values of the field equations used in the Perceptual memory part.
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Action Onset Memory field uAMEM

β 0.00085 (Model I); 0.0017 (Model II)

Past Events field uPE
τuPE

14
wPE = wosc A = 4, b = 0.8, α = 0.4

kPE 0.5
SPE 10
dPE 3/dt
hPE 5.6

Table A.3: Parameter values of the field equations used in the Motor memory part.

Action Onset field uACT
τuACT

14
wACT = wlat wexc = 4, σexc = 2.3, winhib = 2.5

kACT 2
βACT 1/1200 (Model I); 1/600 (Model II)

hACT (t0) 0

Simulation field uSIM
τuACT

14
wSIM = wlat wexc = 4, σexc = 2.3, winhib = 0

kACT 2
βSIM 1/2000

hSIM(t0) 0

Feedback fields uF1,2

τuF 14
wF = wlat wexc = 4, σexc = 2.3, winhib = 2.5
SF1,2 10
kF 0.5
hF 3

Error Monitoring field uERROR
τuERROR

14
wE = wosc A = 4, b = 0.8, α = 0.4

hE 6
kE 2

Table A.4: Parameter values of the field equations used in the Sequence recall part.
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